Advertisement

Ocean Dynamics

, Volume 64, Issue 1, pp 61–78 | Cite as

Lateral stirring of large-scale tracer fields by altimetry

  • Guillaume Dencausse
  • Rosemary Morrow
  • Marine Rogé
  • Sara Fleury
Article

Abstract

Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ∼2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.

Keywords

Mesoscale Submesoscale Lagrangian advection Sea surface temperature Sea surface salinity Antarctic circumpolar current Oceanic fronts 

Notes

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreement n°283367 (MyOcean2). We gratefully acknowledge the help from Francesco D’Ovidio for the advection code and early assistance with the project. We are also indebted to Elodie Kestenare for her assistance with the SURVOSTRAL TSG data and matlab support, and to Renaud Dussurget of the CTOH/LEGOS for assistance with the altimeter data and code. Two anonymous reviewers also provided helpful and constructive comments.

References

  1. Abraham ER (1998) The generation of plankton patchiness by turbulent stirring. Nature 391(6667):577–580CrossRefGoogle Scholar
  2. Abraham ER, Law CS et al (2000) Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407(6805):727–730CrossRefGoogle Scholar
  3. Abraham ER, Bowen MM (2002) Chaotic stirring by a mesoscale surface-ocean flow. Chaos 12:373–381Google Scholar
  4. Belkin IM, Gordon AL (1996) Southern ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res Oceans 101(C2):3675–3696CrossRefGoogle Scholar
  5. Chaigneau A, Morrow R (2002) Surface temperature and salinity variations between Tasmania and Antarctica, 1993–1999. J Geophys Res Oceans 107(C12)Google Scholar
  6. Cresswell GR (2000) Currents of the continental shelf and upper slope of Tasmania. Pap Proc R Soc Tasmania 133:21–30Google Scholar
  7. Dencausse G, Arhan M et al (2011) Is there a continuous Subtropical Front south of Africa? J Geophys Res Oceans 116Google Scholar
  8. Despres A, Reverdin G et al (2011) Mechanisms and spatial variability of meso scale frontogenesis in the northwestern subpolar gyre. Ocean Model 39(1–2):97–113CrossRefGoogle Scholar
  9. Dibarboure G, Pujol MI et al (2011) Jason-2 in DUACS: updated system description, first tandem results and impact on processing and products. Mar Geod 34(3–4):214–241CrossRefGoogle Scholar
  10. d'Ovidio F, Fernandez V et al (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31(17):4CrossRefGoogle Scholar
  11. d'Ovidio F, Isern-Fontanet J et al (2009) Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep-Sea Res I Oceanogr Res Pap 56(1):15–31CrossRefGoogle Scholar
  12. Dussurget R, Birol F et al (2011) Fine resolution altimetry data for a regional application in the Bay of Biscay. Mar Geod 34(3–4):447–476CrossRefGoogle Scholar
  13. Ferrari R, McWilliams JC, Canuto V, Dubovikov D (2008) Parameterization of eddy fluxes at the ocean boundaries. J Climate 21:2770–2789CrossRefGoogle Scholar
  14. Fox-Kemper B, Ferrari R et al (2008) Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J Phys Oceanogr 38(6):1145–1165CrossRefGoogle Scholar
  15. Guinehut S, Le Traon PY et al (2004) Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—a first approach based on simulated observations. J Mar Syst 46(1–4):85–98CrossRefGoogle Scholar
  16. Hoskins BJ, Bretherton FP (1972) Atmospheric frontogenesis models: mathematical formulation and solution. J Atmos Sci 29:11–37CrossRefGoogle Scholar
  17. Hughes CW, Ash ER (2001) Eddy forcing of the mean flow in the Southern Ocean. J Geophys Res Oceans 106(C2):2713–2722Google Scholar
  18. Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Ann Rev Mar Sci 1:351–375Google Scholar
  19. Le Sommer J, d'Ovidio F et al (2011) Parameterization of subgrid stirring in eddy resolving ocean models. Part 1: Theory and diagnostics. Ocean Model 39(1–2):154–169CrossRefGoogle Scholar
  20. Le Traon PY, Dibarboure G et al (2001) Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. J Atmos Ocean Technol 18(7):1277–1288CrossRefGoogle Scholar
  21. Lehahn Y, d'Ovidio F et al (2007) Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J Geophys Res Oceans 112(C8)Google Scholar
  22. Levy M, Klein P et al (2001) Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J Mar Res 59(4):535–565CrossRefGoogle Scholar
  23. Levy M, Gavart M et al (2005) A four-dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): results of a prognostic model. J Geophys Res Oceans 110(C7)Google Scholar
  24. Morrow R, Brut A et al (2003) Seasonal and interannual variations of the upper ocean energetics between Tasmania and Antarctica. Deep-Sea Res Part I 50(3):339–356CrossRefGoogle Scholar
  25. Morrow R, Valladeau G, Sallee J (2008) Observed subsurface signature of Southern Ocean decadal sea level rise. Prog Oceanogr 77/4:351–366CrossRefGoogle Scholar
  26. Mulet S et al (2012) A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep-Sea Res II. doi: 10.1016/j.dsr2.2012.04.012 Google Scholar
  27. Orsi AH, Whitworth T et al (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I 42(5):641–673CrossRefGoogle Scholar
  28. Paci A, Caniaux G et al (2005) A high-resolution simulation of the ocean during the POMME experiment: simulation results and comparison with observations. J Geophys Res Oceans 110(C7)Google Scholar
  29. Rio, M. H., P. Schaeffer, et al (2009) A new mean dynamic topography computed over the global ocean from GRACE data, altimetry and in situ measurements. Poster communication at OceanObs09 symposium, 21–25 September 2009, Venice, ItalyGoogle Scholar
  30. Sallee J-B, Wienders N et al (2006) Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn 56(5–6):525–542CrossRefGoogle Scholar
  31. Sallee JB, Speer K et al (2008) An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J Mar Res 66(4):441–463CrossRefGoogle Scholar
  32. Sokolov S, Rintoul SR (2007) Multiple jets of the Antarctic circumpolar current South of Australia. J Phys Oceanogr 37(5):1394–1412CrossRefGoogle Scholar
  33. Thomas L, Ferrari R (2008) Friction, frontogenesis, frontal instabilities and the stratification of the ocean surface mixed layer. J Phys Oceanogr 38:2501–2518CrossRefGoogle Scholar
  34. Turiel A, Isern-Fontanet J et al (2005) Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys Rev Lett 95(10)Google Scholar
  35. Waugh, D and E.R. Abraham (2008). Stirring in the global surface ocean. Geophys Res Lett 35, doi: 10.1029/2008GL035526

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Dencausse
    • 1
  • Rosemary Morrow
    • 1
  • Marine Rogé
    • 1
  • Sara Fleury
    • 1
  1. 1.LEGOSToulouseFrance

Personalised recommendations