Ocean Dynamics

, Volume 64, Issue 2, pp 179–207 | Cite as

Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach

  • Elena AlekseenkoEmail author
  • Virginie Raybaud
  • Boris Espinasse
  • François Carlotti
  • Bernard Queguiner
  • Bénédicte Thouvenin
  • Pierre Garreau
  • Melika Baklouti
Part of the following topical collections:
  1. Topical Collection on the 16th biennial workshop of the Joint Numerical Sea Modelling Group (JONSMOD) in Brest, France 21-23 May 2012


The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27–May 2, 2010 and Costeau-6: January 23–January 27, 2011).


Biogeochemical model Eco3M model MARS3D model Variable stoichiometry Intracellular contents NW Mediterranean Sea Gulf of Lions 



The present research is part of the project COSTAS (“Trophic contaminants in the system: phytoplankton, zooplankton, anchovy, sardine”), funded by the French ANR/CES and IFREMER. One of the objectives of COSTAS was related to the model’s ability to replicate space-temporal dynamics of different functional groups of plankton and associated trophic fluxes. Part of this research is also a contribution to the Labex OT-Med (no. ANR-11-LABX-0061) funded by the French Government “Investissements d’Avenir” program of the French National Research Agency (ANR) through the A*MIDEX project (no ANR-11-IDEX-0001-02). We thank our anonymous reviewers for their helpful comments that allowed us to improve the manuscript.


  1. Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins. Paramètres et analyses. In: Ifremer (ed)Google Scholar
  2. André G, Garreau P, Garnier V, Fraunié P (2005) Modeled variability of the sea surface circulation in the North-western Mediterranean Sea and in the Gulf of Lions. Ocean Dyn 55:294–308CrossRefGoogle Scholar
  3. André G, Garreau P, Fraune P (2009) Mesoscale slope current variability in the Gulf of Lions. Interpretation of in-situ measurements using a three-dimensional model. Cont Shelf Res 2:407–423CrossRefGoogle Scholar
  4. Auger PA, Diaz F, Ulses C, Estornel C, Neveux J, Joux F, Pujo-Pay M, Naudin JJ (2011) Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modeling combined approach. Biogeosciences 8:3231–3261CrossRefGoogle Scholar
  5. Avril B (2002) DOC dynamics in the northwestern Mediterranean Sea (DYFAMED site). Deep-Sea Res II 49:2163–2182CrossRefGoogle Scholar
  6. Baklouti M, Diaz F, Pinazo C, Faure V, Quequiner B (2006a) Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog Oceanogr 71:1–33CrossRefGoogle Scholar
  7. Baklouti M, Faure V, Pawlowski L, Sciandra A (2006b) Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular tool (Eco3M) dedicated to biogeochemical modelling. Prog Oceanogr 71:34–58CrossRefGoogle Scholar
  8. Baklouti M, Chevalier C, Bouvy M, Corbin D, Pagano M, Troussellier M, Arfi R (2011) A study of plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D mechanistic model. Ecol Model 222(15):2704–2721CrossRefGoogle Scholar
  9. Baretta-Bekker JG, Baretta JW, Ebenhoh W (1997) Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J Sea Res 38:195–211CrossRefGoogle Scholar
  10. Barquero S, Cabal JA, Anadón R, Fernández E, Varela M, Bode A (1998) Ingestion rates of phytoplankton by copepod size-fractions on a bloom associated to an off-shelf front off NW Spain. J Plankton Res 20:957–972Google Scholar
  11. Bethoux JP, Gentili B, Morin P, Nicolas E, Pierre C, Ruiz-Pino D (1999) The Mediterranean Sea: a miniature ocean for climatic and environmental studies and a key for the climatic functioning of the North Atlantic. Prog Oceanogr 44(1–3):131–146CrossRefGoogle Scholar
  12. Bethoux JP, Durieu de Madron X, Nyffeler F, Tailliez D (2002) Deep water in the western Mediterranean: peculiar 1999 and 2000 characteristics, shelf formation hypothesis, variability since 1970 and geochemical inferences. J Mar Syst 33–34:117–131CrossRefGoogle Scholar
  13. Bissett WP, Walsh JJ, Dieterle DA, Carder KL (1999) Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep-Sea Res I 46:205–269CrossRefGoogle Scholar
  14. Bissett WP, Arnone R, DeBra S, Dieterle DA, Dye D, Kirkpatrick GJ, Schofield OM, Vargo GA (2005) Predicting the optical properties of the West Florida Shelf: Resolving the potential impacts of a terrestrial boundary condition on the distribution of colored dissolved and particulate matter. Mar Chem 95:199–233CrossRefGoogle Scholar
  15. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional coastal ocean models. Coastal and estuarine sciences. American Geophysical Union, Washington, pp 1–16CrossRefGoogle Scholar
  16. Brogueira MJ, Oliveira MR, Cabeçadas G (2007) Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal. Mar Environ Res 64:616–628CrossRefGoogle Scholar
  17. Cauwet G, Miller A, Brasse S, Fengler G, Mantoura RFC, Spitzy A (1997) Dissolved and particulate organic carbon in the western Mediterranean Sea. Deep-Sea Res II 44:769–779CrossRefGoogle Scholar
  18. Chifflet M, Andersen V, Prieur L, Dekeyser I (2001) One-dimensional model of short-term dynamics of the pelagic ecosystem in the NW Mediterranean Sea: effects of wind events. J Mar Syst 20:89–114CrossRefGoogle Scholar
  19. Christaki U, Jacquet S, Dolan JR, Vaulot D, Rassoulzadegan F (1999) Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol Oceanogr 44(1):52–61Google Scholar
  20. Christaki U, Courties C, Joux F, Jeffrey WH, Neveux J, Naudin JJ (2009) Community structure and trophic role of ciliates and heterotrophic nanoflagellates in Rhone River diluted mesoscale structures (NW Mediterranean Sea). Aquatic Microbial Ecology 57:263–277. doi: 10.3354/ame01339 Google Scholar
  21. Christaki U, Van Wambeke F, Lefevre D, Lagaria A, Prieur L, Pujo-Pay M, Grattepanche JD, Colombet J, Psarra S, Dolan J, Sime-Ngando T, Weinbauer M, Moutin T (2011a) Impact of anticyclonic mesoscale features on the Mediterranean Sea’s microbial food web. Biogeosciences 8:1–14CrossRefGoogle Scholar
  22. Christaki U, Courties C, Massana R, Catala P, Lebaron P, Gasol P, Zubkov MV (2011b) Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol Oceanogr Methods 9:329–339CrossRefGoogle Scholar
  23. Christian JR (2005) Biogeochemical cycling in the oligotrophic ocean: Redfield and non-Redfield models. Limnol Oceanogr 50(2):646–657Google Scholar
  24. Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8):e11842. doi: 10.1371/journal.pone.0011842 CrossRefGoogle Scholar
  25. Crombet Y, Leblanc K, Quéguiner B, Moutin T, Rimmelin P, Ras J, Claustre H, Leblond N, Oriol L, Pujo-Pay M (2011) Deep silicon maxima in the stratified oligotrophic Mediterranean Sea. Biogeosciences 8:459–475CrossRefGoogle Scholar
  26. Diaz F, Raimbault P, Boudjellal B, Garcia N, Moutin T (2001) Early spring phosphorus limitation of primary productivity in a NW Mediterranean coastal zone (Gulf of Lions). Mar Ecol Prog Ser 211:51–62CrossRefGoogle Scholar
  27. Diaz F, Naudin J-J, Courties C, Rimmelin P, Oriol L (2008) Biogeochemical and ecological functioning of the low-salinity water lenses in the region of the Rhone River freshwater influence, NW Mediterranean Sea. Cont Shelf Res 28(12):1511–1526CrossRefGoogle Scholar
  28. Domingues RB, Anselmo TP, Barbosa AB, Sommer U, Galvão HM (2011) Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary. Estuar Coast Shelf Sci 91(2):282–297CrossRefGoogle Scholar
  29. Doney SC, Lindsay K, Caldeira K, Campin J-M, Drange H, Dutay J-C, Follows M, Gao Y, Gnanadesikan A, Gruber N, Ishida A, Joos F, Madec G, Maier-Reimer E, Marshall JC, Matear RJ, Monfray P, Mouchet A, Najjar R, Orr JC, Plattner G-K, Sarmiento J, Schlitzer R, Slater R, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2004) Evaluating global ocean carbon models: the importance of realistic physics. Glob Biogeochem Cycles 18, GB3017. doi: 10.1029/2003GB002150 CrossRefGoogle Scholar
  30. Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc U K 48:689–733CrossRefGoogle Scholar
  31. Droop MR (1970) Vitamin B12 and marine ecology. V. Continuous culture as an approach to nutritional kinetics. Heloglander wiss Meeresutners 20:629–636CrossRefGoogle Scholar
  32. Eisenhauer N, Milcu A, Nitschke N, Sabais ACW, Scherber C, Scheu S (2009) Earthworm and belowground competition effects on plant productivity. Oecologia 161:291–301CrossRefGoogle Scholar
  33. Faugeras B, Lévy M, Mémery L, Verron J, Blum J, Charpentier I (2003) Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station. J Mar Syst 40–44:99–125CrossRefGoogle Scholar
  34. Faugeras B, Bernard O, Sciandra A, Lévy M (2004) A mechanistic modelling and data assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical–biological model. Nonlinear Proc Geoph 11:515–533CrossRefGoogle Scholar
  35. Fontana C, Grenz C, Pinazo C, Marsaleix P, Diaz F (2009) Assimilation of SeaWiFS chlorophyll data into a 3D-coupled physical–biogeochemical model applied to a freshwater-influenced coastal zone. Cont Shelf Res 29(11–12):1397–1409CrossRefGoogle Scholar
  36. Frost BW, Franzen NC (1992) Grazing and iron limitatioil in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling. Mar Ecol Prog Ser 83:291–303Google Scholar
  37. Geider RJ, La Roche J (2002) Redfield revisited: variability in the N:P ratio of phytoplankton and its biochemical basis. Eur J Phycol 37:1–17CrossRefGoogle Scholar
  38. Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnol Oceanogr 43:679–694Google Scholar
  39. Gentleman W, Leising A, Frost B, Strom S, Murray J (2003) Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res 50:2847–2875CrossRefGoogle Scholar
  40. Grell GA., Dudhia J, Stauffer DR (1993) A description of the fifth-generation Penn State / NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/ TN-398+STR, pp 117Google Scholar
  41. Han BP (2002) A mechanistic model of algal photoinhibition induced by photodamage to photosystem. J Theor Biol 214:519–527CrossRefGoogle Scholar
  42. Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48(5):1732–1743Google Scholar
  43. Holling CS (1965) The functional response of predator to prey density and its role in mimicry and population regulation. Mem Ent Sec Can 45:1–60CrossRefGoogle Scholar
  44. Janse JH, Aldenberg T (1991) Modelling the eutrophication of the shallow Loosdrecht Lakes. Verh Int Ver Limnol 24:751–757Google Scholar
  45. Kiorboe T (2008) Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–192. doi: 10.1007/s00442-007-0893-x Google Scholar
  46. Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174CrossRefGoogle Scholar
  47. Klausmeier CA, Litchman E, Daufresne T, Levin SA (2008) Phytoplankton stoichiometry. Ecol Res 23:479–485CrossRefGoogle Scholar
  48. Kooijman SALM (2000) Energy and mass budgets in biological systems. University Press, CambridgeCrossRefGoogle Scholar
  49. Krom MD, Herut B, Mantoura RFC (2000) Nutrient budget for the Eastern Mediterranean: implications for phosphorus limitation. Limnol Oceanogr 49(5):1582–1592Google Scholar
  50. Labrune C, Romero-Ramirez A, Amouroux JM, Duchêne JC, Desmalades M, Escoubeyrou K, Buscail R, Grémare A (2012) Comparison of ecological quality indices based on benthic macrofauna and sediment profile images: a case study along an organic enrichment gradient off the Rhône River. Ecol Indic 12(1):133–142CrossRefGoogle Scholar
  51. Lacroix G, Nival P (1998) Influence of meteorological variability on primary production dynamics in the Ligurian Sea (NW Mediterranean Sea) with a 1D hydrodynamic/biological model, in: Delhez, E.J.M. Modelling hydrodynamically dominated Manne ecosystems. J Mar Syst 16(Special Issue 1–2):23–50CrossRefGoogle Scholar
  52. Lazure P, Dumas F (2008) An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233–250CrossRefGoogle Scholar
  53. Lazzari P, Solidoro C, Ibello V, Salon S, Teruzzi A, Beranger K, Colella S, Crise A (2012) Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences 9:217–233CrossRefGoogle Scholar
  54. Levy M (2003) Mesoscale variability of phytoplankton and of new production: Impact of the large-scale nutrient distribution. J Geophys Res 108(C11), doi: 10.1029/2002JC001577
  55. Li Y, Gal G, Waite AM, Hipsey MR (2011) Microbial loop processes shape the food web stoichiometry in Lake Kinneret. 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011Google Scholar
  56. Ludwig W, Bouman AF, Dumont E, Lespinas F (2010) Water and nutrient fluxes from major Mediterranean and Black Sea rivers: past and future trends and their implications for the basin scale budgets. Glob Biogeochem Cycles 24:GB0A13. doi: 10.1029/2009GB003594 CrossRefGoogle Scholar
  57. Malanotte-Rizzoli P and the Pan-Med Group (2012) Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions of future research. Report of the Workshop “Variability of the Eastern and Western Mediterranean circulation and thermohaline properties: similarities and differences” Rome, 7–9 November, 2011, 48ppGoogle Scholar
  58. Marty JC, Garcia N, Raimbault P (2008) Phytoplankton dynamics and primary production under late summer conditions in the NW Mediterranean Sea. Deep-Sea Res I 55:1131–1149CrossRefGoogle Scholar
  59. Mauriac R, Moutin T, Baklouti M (2011) Accumulation of DOC in low phosphate low chlorophyll (LPLC) area: is it related to higher production under high N:P ratio? Biogeosciences 8:933–950. doi: 10.5194/bg-8-933-2011 CrossRefGoogle Scholar
  60. Mémery L, Levy M, Verant S, Merlivat L (2002) The relevant time scales in estimating the air–sea CO2 exchange in a mid-latitude region. Deep-Sea Res II 49:2067–2092CrossRefGoogle Scholar
  61. Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean Sea, The Handbook of Environmental Chemistry, Vol. K: 29–66 doi:  10.1007/b107143
  62. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res II 49:403–462CrossRefGoogle Scholar
  63. Moutin T, Raimbault P (2002) Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst 33–34:273–288CrossRefGoogle Scholar
  64. Nicolle A, Garreau P, Liorzou B (2009) Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea). Ocean Dyn 59(6):953–968CrossRefGoogle Scholar
  65. Oschlies A, Garçon V (1999) An eddy-permitting coupled physical-biological model of the North Atlantic 1. Sensitivity to advection numerics and mixed layer physics. Glob Biogeochem Cycles 13(1):135–160CrossRefGoogle Scholar
  66. Pairaud IL, Gatti J, Bensoussan N, Verney R, Garreau P (2011) Hydrology and circulation in a coastal area off Marseille: validation of a nested 3D model with observations. J Mar Syst 88:20–33CrossRefGoogle Scholar
  67. Perez MT, Dolan JR, Fukai W (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar Ecol Prog Ser 155:89–101Google Scholar
  68. Pinardi N, Allen I, De Mey P, Korres G, Lascaratos A, Le Traon PY, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean Ocean Forecasting System: first phase of implementation (1998–2001). Ann Geophys 21(1):3–20CrossRefGoogle Scholar
  69. Polimene L, Pinardi N, Zavatarelli M, Allen JI, Giani M, Vichi M (2007) A numerical simulation study of dissolved organic carbon accumulation in the northern Adriatic Sea. J Geophys Res 112(C3): doi:  10.1029/2006JC003529. issn: 0148–0227Google Scholar
  70. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione J-F, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899CrossRefGoogle Scholar
  71. Raick C, Delhez EJM, Soetaert K, Grégoire M (2005) Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model. J Mar Syst 55:177–203CrossRefGoogle Scholar
  72. Raick C, Soetaert K, Grégoire M (2006) Model complexity and performance: how far can we simplify. Prog Oceanogr 70:27–57CrossRefGoogle Scholar
  73. Raick C, Alvera-Azcarate A, Barth A, Brankart JM, Soetaert K, Grégoire M (2007) Application of a SEEK filter to a 1D biogeochemical model of the Ligurian Sea: twin experiments and real in-situ data assimilation. J Mar Syst 65:561–583CrossRefGoogle Scholar
  74. Raimbault P, Durrieu de Madron X (2003) Research activities in the Gulf of Lion (NW Mediterranean) within the 1997–2001 PNEC project. Oceanol Acta 26(4):291–298CrossRefGoogle Scholar
  75. Raybaud V, Nival P, Mousseau L, Gubanova A, Altukhov D, Khvorov S, Ibañez F, Andersen V (2008) Short term changes in zooplankton community during the summer–autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity. Biogeosciences 5:1573–1586CrossRefGoogle Scholar
  76. Raybaud V, Tunin-Ley A, Ritchie ME, Dolan JR (2009) Similar patterns of community organization characterize distinct groups of different trophic levels in the plankton of the NW Mediterranean Sea. Biogeosciences 6:431–438CrossRefGoogle Scholar
  77. Raybaud V, Nival P, Prieur L (2011) Short time-scale analysis of the NW Mediterranean ecosystem during summer–autumn transition: a 1D modelling approach. J Mar Syst 84:1–17CrossRefGoogle Scholar
  78. Redfield, A.C. (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel, R.J. (Ed.), James Johnstone Memorial Volume. University Press of Liverpool, Liverpool, pp. 177–192Google Scholar
  79. Ridame C, Moutin T, Guieu C (2003) Does phosphate adsorption onto Saharan dust explain the unusual N/P ratio in the Mediterranean Sea? Oceanol Acta 26:629–634CrossRefGoogle Scholar
  80. Romero E, Peters F, Marrasé C, Guadayol Ò, Gasol JM, Weinbauer MG (2011) Coastal Mediterranean plankton stimulation dynamics through a dust storm event: an experimental simulation. Estuar Coast Shelf Sci 93:27–39CrossRefGoogle Scholar
  81. Rubio A, Taillandier V, Garreau P (2009) Reconstruction of the Mediterranean northern current variability and associated cross-shelf transport in the Gulf of Lions from satellite-tracked drifters and model outputs. J Mar Syst 78:63–78CrossRefGoogle Scholar
  82. Schaeffer A, Molcard A, Forget P, Fraunie P, Garreau P (2011) Generation mechanisms for mesoscale eddies in the Gulf of Lions: radar observation and modeling. Ocean Dyn 61(10):1587–1609CrossRefGoogle Scholar
  83. Sempéré R, Charrière B, Van Wambeke F, Cauwet G (2000) Carbon inputs of the Rhône River to the Mediterranean Sea: biogeochemical implications. Glob Biogeochem Cycles 14:669–681CrossRefGoogle Scholar
  84. Sherr EB, Sherr BF, Sigmon CT (1999) Activity of marine bacteria under incubated and in situ conditions. Aquat Microb Ecol 20: 213–223. doi: 10.3354/ame020213 Google Scholar
  85. Sterner RW, Elser JJ (2002) Ecological stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ., ISSN 0-691-07491-7Google Scholar
  86. Tanaka T (2009) Structure and function of the mesopelagic microbial loop in the NW Mediterranean Sea. Aquat Microb Ecol 57:351–362CrossRefGoogle Scholar
  87. Tanaka T, Rassoulzadegan F (2002) Full-depth profile (0–2,000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: vertical partitioning of microbial trophic structures. Deep-Sea Res II 49:2093–2107CrossRefGoogle Scholar
  88. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192Google Scholar
  89. The MerMex Group, Durrieu de Madron X, Guieu C, Sempéré R, Conan P, Cossa D, D’Ortenzio F, Estournel C, Gazeau F, Rabouille C, Stemmann L, Bonnet S, Diaz F, Koubbi P, Radakovitch O, Babin M, Baklouti M, Bancon-Montigny C, Belviso S, Bensoussan N, Bonsang B, Bouloubassi I, Brunet C, Cadiou J-F, Carlotti F, Chami M, Charmasson S, Charrière B, Dachs J, Doxaran D, Dutay J-C, Elbaz-Poulichet F, Eléaume M, Eyrolles F, Fernandez C, Fowler S, Francour P, Gaertner JC, Galzin R, Gasparini S, Ghiglione J-F, Gonzalez J-L, Goyet C, Guidi L, Guizien K, Heimbürger L-E, Jacquet SHM, Jeffrey WH, Joux F, Le Hir P, Leblanc K, Lefèvre D, Lejeusne C, Lemé R, Loÿe-Pilot M-D, Mallet M, Méjanelle L, Mélin F, Mellon C, Mérigot B, Merle P-L, Migon C, Miller WL, Mortier L, Mostajir B, Mousseau L, Moutin T, Para J, Pérez T, Petrenko A, Poggiale J-C, Prieur L, Pujo-Pay M, Pulido-Villena, Raimbult P, Rees AP, Ridame C, Rontani J-F, Ruiz Pino D, Sicre MA, Taillandier V, Tamburini C, Tanaka T, Taupier-Letage I, Tedetti M, Testor P, Thébault H, Thouvenin B, Touratier F, Tronczynski J, Ulses C, Van Wambeke F, Vantrepotte V, Vaz S, Verney R (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166CrossRefGoogle Scholar
  90. Thingstad TF (2005) Simulating the response to phosphate additions in the oligotrophic eastern Mediterranean using an idealized four-member microbial food web model. Deep-Sea Res II Top Stud Oceanogr 52:3074–3089CrossRefGoogle Scholar
  91. Thingstad TF, Skjoldal EF, Bohne RA (1993) Phosphorus cycling and algal–bacterial competition in Sandsfjord, Western Norway. Mar Ecol Progr Ser 99:239–259CrossRefGoogle Scholar
  92. Tusseau M-H, Lancelot C, Martin J-M, Tassin B (1997) 1D coupled physical–biological model of the north-western Mediterranean Sea. Deep Sea Res II 44(3–4):851–880CrossRefGoogle Scholar
  93. Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64(1–4):89–109. doi: 10.1016/j.jmarsys.2006.03.006 CrossRefGoogle Scholar
  94. Vidussi F, Claustre H, Manca BB, Luchetta A, Marty JC (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res 106(19):939–956Google Scholar
  95. Vries I, Duin RMN, Peeters JCH, Los FJ, Bokhorst M, Laane RWPM (1998) Patterns and trends in nutrients and phytoplankton in Dutch coastal waters: comparison of time-series analysis, ecological model simulation, and mesocosm experiments. ICES J Mar Sci 55:620–634CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elena Alekseenko
    • 1
    • 2
    Email author
  • Virginie Raybaud
    • 3
    • 4
  • Boris Espinasse
    • 1
    • 2
  • François Carlotti
    • 1
    • 2
  • Bernard Queguiner
    • 1
    • 2
  • Bénédicte Thouvenin
    • 5
  • Pierre Garreau
    • 5
  • Melika Baklouti
    • 1
    • 2
  1. 1.Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110Marseille, Cedex 09France
  2. 2.Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110La Garde CedexFrance
  3. 3.Université Lille 1 - Sciences et Technologies (USTL), UMR 8187 LOGLaboratoire d’Océanologie et de GéosciencesWimereuxFrance
  4. 4.CNRS, UMR 8187 LOGLaboratoire d’Océanologie et de GéosciencesWimereuxFrance
  5. 5.IFREMER, Centre de BrestPlouzanéFrance

Personalised recommendations