Ocean Dynamics

, Volume 64, Issue 1, pp 1–12 | Cite as

North Sea wave conditions: an analysis of four transient future climate realizations

  • Nikolaus Groll
  • Iris Grabemann
  • Lidia Gaslikova


The multi-decadal wave conditions in the North Sea can be influenced by anthropogenic climate change. That may lead to the intensification of wave extremes in the future and consequently increase risks for the coastal areas as well as for on- and offshore human activities. Potential changes caused by alteration of atmospheric patterns are investigated. Four transient climate projections (1961–2100), reflecting two IPCC emission scenarios (A1B and B1) and two different initial states, are used to simulate the wave scenarios. The potential wind-induced changes in waves are studied by comparing future statistics (2001–2100) with the corresponding reference conditions (1961–2000). Generally, there is a small increase in future 99th percentile significant wave height for most eastern parts of the North Sea towards the end of the twenty-first century. This small increase is superimposed by a strong variability of the annual extremes on time scales of decades. Opposite to the differences in wave height, the change in wave direction to more waves propagating east shows less decadal variability and is more uniform among all realizations. Nevertheless, temporal and spatial differences of the wave height in the four climate projections point to the uncertainties in the climate change signals.


Ocean waves Climate change Extreme events North Sea Wave modeling 



The authors are thankful to A. Behrens for assistance with the model WAM and to B. Gardeike for assistance with the graphics. The investigation was partly supported in the context of the joint project A-KÜST in KLIFF (Förderkennzeichen VWZN2455, Az. 99-22/07).


  1. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543. doi: 10.1175/JCLI3815.1 CrossRefGoogle Scholar
  2. Bergenhagen J, Döhring R, Fock HO, Kloppmann MHF, Pedersen SA, Schulze T (2010) Decision bias in marine spatial planning of offshore wind farms: problems of singular versus cumulative assessments of economic impacts on fisheries. Mar Policy 34:733–736. doi: 10.1016/j.marpol.2009.12.004 CrossRefGoogle Scholar
  3. Bundesamt für Seeschifffahrt und Hydrographie (2013) Bundesfachplan Offshore für die deutsche ausschließliche Wirtschaftszone der Nordsee 2012 und Umweltbericht BSH Nr. 7601.
  4. Casas-Prat M, Sierra SP (2012) Trend analysis of wave direction and associated impacts on the Catalan coast. Clim Change 115:667–691. doi: 10.1007/s10584-012-0466-9 CrossRefGoogle Scholar
  5. Cieślikiewicz W, Paplińska-Swerpel B (2008) A 44-year hindcast of wind wave fields over the Baltic Sea. Coast Eng 55(11):849–905CrossRefGoogle Scholar
  6. de Winter RC, Sterl A, de Vries JW, Weber SL, Ruessink G (2012) The effect of climate change on extreme waves in front of the Dutch coast. Ocean Dyn 62:1139–1152. doi: 10.1007/s10236-012-0551-7 CrossRefGoogle Scholar
  7. de Winter RC, Sterl A, Ruessink G (2013) Wind extremes in the North Sea Basin under climate change: an ensemble study of 12 CMIP5 GCMs. J Geophys Res Atmos 118:1601–1612. doi: 10.1002/jgrd.50147 CrossRefGoogle Scholar
  8. Debernard J, Røed L (2008) Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus A 60(3):427–438. doi: 10.1111/j.1600-0870.2008.00312.x CrossRefGoogle Scholar
  9. Dreier N, Schlamkow C, Fröhle P (2011) Assessment of future wave climate on basis of wind-wave-correlations and climate change scenarios. J Coast Res SI 64:210–214. ISSN 0749–0208Google Scholar
  10. Gaslikova L, Grabemann I, Groll N (2013) Changes in North Sea storm surge conditions for four transient future climate realizations. Nat Hazards. doi: 10.1007/s11069-012-0279-1
  11. Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:199–212. doi: 10.1007/s10236-008-0141-x CrossRefGoogle Scholar
  12. Hemer MA, Wang XL, Weisse R, Swail VR (2012) Advancing wind-waves climate science: the COWCLIP Project. Bull Am Meteorol Soc 93:791–796. doi: 10.1175/BAMS-D-11-00184 CrossRefGoogle Scholar
  13. Hollweg H, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical report 3. Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, Hamburg. ISSN 1619–2257Google Scholar
  14. Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Lowe JA, Howard T, Pardaens A, Tinker J, Jenkins G, Ridley J, Leake J, Holt J, Wakelin S, Wolf J, Horsburgh K, Reeder T, Milne G, Bradley S, Dye S (2009) UK climate projections science report: marine and coastal projections. Met Office Hadley Centre, Exeter. ISBN 978-1-906360-03-0Google Scholar
  16. Marsland S, Haak H, Jungclaus J, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  17. Nakicenovic N, Swart R (eds) (2000) Special report of the intergovernmental panel on climate change on emission scenarios. Cambridge University Press, Cambridge. Google Scholar
  18. Pinto J, Ulbrich U, Leckebusch G, Spangehl T, Reyers M, Zacharis S (2007) Changes in the storm track and cyclone activity in the three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210. doi: 10.1007/s00382-007-0230-4 CrossRefGoogle Scholar
  19. Reistad M, Breivik Ø, Haakenstad H, Aarnes OJ, Furevik BR, Bidlot J (2011) A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J Geophys Res 116:C05,019. doi: 10.1029/2010JC006402 CrossRefGoogle Scholar
  20. Rockel B, Will A, Hense A (eds) (2008) Special issue regional climate modeling with COSMO-CLM (CCLM), vol 17. Met. ZeitschriftGoogle Scholar
  21. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. MPI - Rep 349, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  22. WAMDI-Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1776–1810Google Scholar
  23. WASA-Group (1998) Changing waves and storms in the Northeast Atlantic?Bull Am Meteorol Soc 79:741–760CrossRefGoogle Scholar
  24. Weisse R, Günther H (2007) Wave climate and long-term changes for the southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn 57:161–172. doi: 10.1007/s10236-006-0094-x CrossRefGoogle Scholar
  25. Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Günther H, Pluess A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteorological-marine reanalysis and climate change projections. Results for Northern Europe and potential for coastal and offshore applications. Bull Am. Meteorol Soc 90(6):849–860. doi: 10.1175/2008BAMS2713.1 CrossRefGoogle Scholar
  26. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32(L18701). doi: 10.1029/2005GL023684

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikolaus Groll
    • 1
  • Iris Grabemann
    • 1
  • Lidia Gaslikova
    • 1
  1. 1.Institute for Coastal ResearchHelmholtz-Zentrum Geesthacht Centre for Material and Coastal ResearchGeesthachtGermany

Personalised recommendations