Ocean Dynamics

, Volume 63, Issue 9–10, pp 1083–1092 | Cite as

Influence of the Coriolis force on the formation of a seasonal thermocline

Article
Part of the following topical collections:
  1. Topical Collection on the 4th International Workshop on Modelling the Ocean in Yokohama, Japan 21–24 May 2012

Abstract

Large eddy simulation (LES) reveals that the Coriolis force plays an important role in seasonal thermocline formation. In the high-latitude ocean, a seasonal thermocline is formed at a certain depth, across which the downward transports of heat and momentum are prohibited. On the other hand, in the equatorial ocean, heat and momentum continue to propagate downward to the deeper ocean without forming a well-defined thermocline. Mechanism to clarify the latitudinal difference is suggested. The depth of a seasonal thermocline h is scaled in terms of both the Ekman length scale λ and the Monin–Obukhov length scale L, as h  ≅  0.5()1/2, which is in contrast to the earlier suggestion as h ∝ L.

Keyword

Seasonal thermocline Coriolis force Large eddy simulation Ocean mixed layer Upper ocean Turbulence Stratification 

References

  1. Alexander RC, Kim J-W (1976) Diagnostic model study of mixed-layer depths in the summer North Pacific. J Phys Oceanogr 6:293–298CrossRefGoogle Scholar
  2. Alexander MA, Scott JD, Deser C (2000) Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J Geophys Res 105:16823–16842CrossRefGoogle Scholar
  3. Cambon C, Godeferd FS, Nicolleau FCGA, Vassilicos JC (2004) Turbulent diffusion in rapidly rotating flows with and without stable stratification. J Fluid Mech 499:231–255CrossRefGoogle Scholar
  4. Carton JA, Grodsky SA, Liu H (2008) Variability of the oceanic mixed layer, 1960–2004. J Climate 21:1029–1047CrossRefGoogle Scholar
  5. Coleman GN, Ferziger JH, Spalpart PR (1990) A numerical study of the turbulent Ekman layer. J Fluid Mech 213:313–348CrossRefGoogle Scholar
  6. Craik ADD, Leibovich S (1976) A rational model for Langmuir circulations. J Fluid Mech 73:401–426CrossRefGoogle Scholar
  7. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/ 2004JC002378Google Scholar
  8. Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970–1991. J Clim 9:1840–1855CrossRefGoogle Scholar
  9. Elsberry RL, Fraim TS, Trapnell RN (1976) A mixed layer model of the oceanic thermal response to hurricanes. J Geophys Res 81:1153–1162CrossRefGoogle Scholar
  10. Garwood RW (1977) An oceanic mixed layer model capable of simulating cyclic states. J Phys Oceanogr 7:455–468CrossRefGoogle Scholar
  11. Gaspar P (1988) Modeling the seasonal cycle of the upper ocean. J Phys Oceanogr 18:161–180CrossRefGoogle Scholar
  12. Gill AE, Turner JS (1976) A comparison of seasonal thermocline models with observation. Deep-Sea Res 23:391–401Google Scholar
  13. Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc 77:437–472CrossRefGoogle Scholar
  14. Kang YJ, Noh Y, Yeh WS (2010) Processes that influence the mixed layer deepening during winter in the North Pacific. J Geophys Res 115:C12004. doi:10.1029/2009JC005833
  15. Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108:C33079. doi:10.1029/2000JC000736
  16. Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19:98–105CrossRefGoogle Scholar
  17. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  18. Mellor GL, Yamada T (1982) Development of a turbulent closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875CrossRefGoogle Scholar
  19. Moum JN, Caldwell DR, Paulson CA (1989) Mixing in the equatorial surface layer and thermocline. J Geophys Res 94:2005–2021CrossRefGoogle Scholar
  20. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2206–2216CrossRefGoogle Scholar
  21. Niiler PP, Kraus EB (1977) One-dimensional models of the upper ocean. In: Kraus EB (ed) Modelling and prediction of the upper layers of the ocean. Pergamon Press, New York, pp. 143–172Google Scholar
  22. Noh Y, Goh G, Raasch S (2009) Formation of a diurnal thermocline in the ocean mixed layer simulated by LES. J Phys Oceanogr 39:1244–1257CrossRefGoogle Scholar
  23. Noh Y, Goh G, Raasch S (2010) Examination of the mixed layer deepening process during convection using LES. J Phys Oceanogr 40:2189–2195CrossRefGoogle Scholar
  24. Noh Y, Goh G, Raasch S (2011) Influence of Langmuir circulation on the deepening of the wind-mixed layer. J Phys Oceanogr 41:472–484CrossRefGoogle Scholar
  25. Noh Y, Kang IS, Herold M, Raasch S (2006) Large eddy simulation of particle settling in the ocean mixed layer. Phys Fluids 18:085109CrossRefGoogle Scholar
  26. Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res 104:15621–15634CrossRefGoogle Scholar
  27. Noh Y, Lee WS (2008) Prediction of the mixed and mixing layer depths from an OGCM. J Oceanogr 64:217–225CrossRefGoogle Scholar
  28. Noh Y, Long RR (1990) Turbulent mixing in a rotating, stratified fluid. Geophys Astrophys Fluid Dyn 53:125–143CrossRefGoogle Scholar
  29. Noh Y, Min HS, Raasch S (2004) Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation. J Phys Oceanogr 34:720–735CrossRefGoogle Scholar
  30. Ohno Y, Iwasaka N, Kobashi F, Sato Y (2009) Mixed layer depth climatology of the North Pacific based on Argo observations. J Oceanogr 65:1–16CrossRefGoogle Scholar
  31. Peters H, Gregg MC, Toole JM (1988) On the parameterization of equatorial turbulence. J Geophys Res 93:1199–1218CrossRefGoogle Scholar
  32. Raasch S, Schröter M (2001) A large eddy simulation model performing on massively parallel computers. Z Meteorol 10:363–372CrossRefGoogle Scholar
  33. Resnyanskiy YD (1975) Parameterization of the integral turbulent energy dissipation in the upper quasihomogeneous layer of the ocean. Izv Atmos Ocean Phys 11:453–457Google Scholar
  34. Schneider N, Müller P (1990) The meridional and seasonal structures of the mixed-layer depth and its diurnal amplitude observed during the Hawaii-to-Tahiti shuttle experiment. J Phys Oceanogr 20:1395–1404CrossRefGoogle Scholar
  35. Sullivan PP, McWilliams JC (2010) Dynamics of winds and currents coupled to surface waves. Annu Rev Fluid Mech 42:19–42CrossRefGoogle Scholar
  36. Thiele M, Müller W-C (2009) Structure and decay of rotating homogeneous turbulence. J Fluid Mech 637:425–442CrossRefGoogle Scholar
  37. Tomita T, Xie SP, Nonaka M (2002) Estimates of surface and subsurface forcing for decadal sea surface temperature variability in the mid-latitude North Pacific. J Meteor Soc Japan 80:1289–1300CrossRefGoogle Scholar
  38. Wang D, McWilliams JC, Large WG (1998) Large-eddy simulation of the diurnal cycle of deep equatorial turbulence. J Phys Oceanogr 28:129–148CrossRefGoogle Scholar
  39. Weller RA, Plueddemann AJ (1996) Observations of the vertical structure of the oceanic boundary layer. J Geophys Res 101:8789–8806CrossRefGoogle Scholar
  40. Wells NC (1979) A coupled ocean–atmosphere experiment: the ocean response. Quart J Roy Meteor Soc 31:1297–1307Google Scholar
  41. Yasuda I, Tozuka T, Noto M, Koutetsu S (2000) Heat balance and regime shifts of the mixed layer in the Kuroshio Extension. Prog Oceangr 47:257–278CrossRefGoogle Scholar
  42. Yeung PK, Xu J (2004) Effects of rotation on turbulent mixing: nonpremixed passive scalars. Phys Fluids 16:93–103CrossRefGoogle Scholar
  43. Zilitinikevich S, Baklanov A, Rost J, Smedan A-S, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart J Roy Meteorol Soc 128:25–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Atmospheric Sciences/Global Environmental LaboratoryYonsei UniversitySeoulKorea

Personalised recommendations