Ocean Dynamics

, Volume 63, Issue 7, pp 761–775 | Cite as

Flow-through PSICAM: a new approach for determining water constituents absorption continuously

  • Jochen WollschlägerEmail author
  • Maik Grunwald
  • Rüdiger Röttgers
  • Wilhelm Petersen


Determination of spectral absorption coefficients in seawater is of interest for biologic oceanographers for various reasons, but faces also several problems, especially if continuous measurements are required. We introduce the flow-through point-source integrating cavity absorption meter (ft-PSICAM) as a new tool for the continuous measurement of spectral absorption coefficients in a range of 400–710 nm. A description of the system is given and its performance in comparison with a conventional PSICAM has been evaluated on two cruises in 2011 in the southern part of the North Sea (German Bight). Furthermore, factors influencing the measurement are discussed. When comparing the data of both systems, a good linear correlation has been found for all wavelengths (r 2 > 0.91). Deviations between systems were different with respect to the wavelength examined with slopes of linear fits between 1.1 and 1.65 and offsets between −0.1 and 0.01, with the higher values at shorter wavelengths. They were caused mainly due to contamination of the flow-through system during operation by phytoplankton particles. Focus was also laid on the measurement of chlorophyll-a concentrations ([chl-a]) and total suspended matter concentrations ([TSM]) on the basis of absorption coefficient determination. For this, appropriate relationships were established and [chl-a] and [TSM] values were calculated from the relevant ft-PSICAM absorption coefficients. Their progression matches well with the progression of fluorescence and turbidity measurements made in parallel. In conclusion, the ft-PSICAM is successful in measuring spectral absorption coefficients continuously and resolving relative changes in seawater optical properties.


Point-source integrating cavity absorption meter (PSICAM) Absorption Continuous measurement Chlorophyll-a Total suspended matter North Sea 



We thank Kerstin Heymann for the HPLC analysis of the water samples and the gravimetric measurements of TSM. This work was supported by the EU-PROTOOL project (ENV.2008. Development of automated sensing technologies for estuaries, coastal areas, and seas). Furthermore, we want to thank the reviewers for their comments helping to improve this publication.


  1. Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res Oceans 108(C7):1–20. doi: 10.1029/2001jc000882 CrossRefGoogle Scholar
  2. Bowers DG, Binding CE (2006) The optical properties of mineral suspended particles: a review and synthesis. Estuarine Coastal Shelf Sci 67(1–2):219–230. doi: 10.1016/j.ecss.2005.11.010 CrossRefGoogle Scholar
  3. Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton—analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332. doi: 10.1029/95jc00463 CrossRefGoogle Scholar
  4. Bricaud A, Morel A, Babin M, Allali K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J Geophys Res Oceans 103(C13):31033–31044. doi: 10.1029/98jc02712 CrossRefGoogle Scholar
  5. Buiteveld H, Hakvoort JHM, Donze M (1994) The optical properties of pure water. Ocean Opt. doi: 10.1117/12.190060 Google Scholar
  6. Cullen JJ, Ciotti AM, Davis RF, Lewis MR (1997) Optical detection and assessment of algal blooms. Limnol Oceanogr 42(5):1223–1239CrossRefGoogle Scholar
  7. Devred E, Sathyendranath S, Stuart V, Platt T (2011) A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sens Environ 115(9):2255–2266. doi: 10.1016/j.rse.2011.04.025 CrossRefGoogle Scholar
  8. Elterman P (1970) Integrating cavity spectroscopy. Appl Optics 9(9):2140–2142. doi: 10.1364/ao.9.002140 CrossRefGoogle Scholar
  9. Finkel ZV, Irwin AJ (2001) Light absorption by phytoplankton and the filter amplification correction: cell size and species effects. J Exp Mar Biol Ecol 259(1):51–61CrossRefGoogle Scholar
  10. Fry ES, Kattawar GW, Pope RM (1992) Integrating cavity absorption meter. Appl Optics 31(12):2055–2065CrossRefGoogle Scholar
  11. Gray DJ, Kattawar GW, Fry ES (2006) Design and analysis of a flow-through integrating cavity absorption meter. Appl Optics 45(35):8990–8998CrossRefGoogle Scholar
  12. Hoepffner N, Sathyendranath S (1992) Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol Oceanogr 37(8):1660–1679CrossRefGoogle Scholar
  13. Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulseamplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43(6):1236–1251CrossRefGoogle Scholar
  14. Kirk JTO (1976) Theoretical analysis of contribution of algal cells to attenuation of light within natural waters. III. Cylindrical and spheiodal cells. New Phytol 77(2):341–358CrossRefGoogle Scholar
  15. Kirk JTO (1994) Light & photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Kirk JTO (1997) Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling. Appl Optics 36(24):6123–6128CrossRefGoogle Scholar
  17. Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37(2):634–642Google Scholar
  18. Leathers RA, Downes TV, Davis CO (2000) Analysis of a point-source integrating-cavity absorption meter. Appl Optics 39(33):6118–6127CrossRefGoogle Scholar
  19. Lerebourg CJY, Pilgrim DA, Ludbrook GD, Neal R (2002) Development of a point source integrating cavity absorption meter. J Opt A Pure Appl Opt 4(4):S56–S65CrossRefGoogle Scholar
  20. Maske H, Haardt H (1987) Quantitative in vivo absorption spectra of phytoplankton—detrital absorption and comparison with fluorescence excitation spectra. Limnol Oceanogr 32(3):620–633CrossRefGoogle Scholar
  21. Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Evens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37(3):313–322. doi: 10.1017/s0967026202003700 CrossRefGoogle Scholar
  22. Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res A Oceanogr Res Pap 28(11):1375–1393CrossRefGoogle Scholar
  23. Musser JA, Fry ES, Gray DJ (2009) Flow-through integrating cavity absorption meter: experimental results. Appl Optics 48(19):3596–3602CrossRefGoogle Scholar
  24. Nelson NB, Siegel DA (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Ann Rev Mar Sci 5:447–476CrossRefGoogle Scholar
  25. Pegau WS, Cleveland JS, Doss W, Kennedy CD, Maffione RA, Mueller JL, Stone R, Trees CC, Weidemann AD, Wells WH, Zaneveld JRV (1995) A comparison of methods for the measurement of the absorption coefficient in natural waters. J Geophys Res Oceans 100(C7):13201–13220. doi: 10.1029/95jc00456 CrossRefGoogle Scholar
  26. Petersen W, Schroeder F, Bockelmann FD (2011) FerryBox—application of continuous water quality observations along transects in the North Sea. Ocean Dyn 61(10):1541–1554. doi: 10.1007/s10236-011-0445-0 CrossRefGoogle Scholar
  27. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723. doi: 10.1364/ao.36.008710 CrossRefGoogle Scholar
  28. Roesler CS (1998) Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnol Oceanogr 43(7):1649–1660CrossRefGoogle Scholar
  29. Roesler CS, Perry MJ, Carder KL (1989) Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr 34(8):1510–1523CrossRefGoogle Scholar
  30. Röttgers R, Doerffer R (2007) Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter. Limnol Oceanogr Methods 5:126–135CrossRefGoogle Scholar
  31. Röttgers R, Schönfeld W, Kipp PR, Doerffer R (2005) Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies. Appl Opt 44(26):5549–5560CrossRefGoogle Scholar
  32. Röttgers R, Häse C, Doerffer R (2007) Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence. Limnol Oceanogr Methods 5:1–12CrossRefGoogle Scholar
  33. Sathyendranath S, Lazzara L, Prieur L (1987) Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr 32(2):403–415CrossRefGoogle Scholar
  34. Schlitzer R (2011) Ocean Data View,
  35. Slade WH, Boss E, Dall'Olmo G, Langner MR, Loftin J, Behrenfeld MJ, Roesler C, Westberry TK (2010) Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. J Atmos Ocean Technol 27(10):1733–1746. doi: 10.1175/2010jtecho755.1 CrossRefGoogle Scholar
  36. Staehr PA, Markager S, Sand-Jensen K (2004) Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters. Mar Ecol Prog Ser 275:115–128CrossRefGoogle Scholar
  37. Stavn RH, Rick HJ, Falster AV (2009) Correcting the errors from variable sea salt retention and water of hydration in loss on ignition analysis: implications for studies of estuarine and coastal waters. Estuarine Coastal Shelf Sci 81(4):575–582CrossRefGoogle Scholar
  38. Tassan S, Ferrari GM (1995) An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol Oceanogr 40(8):1358–1368CrossRefGoogle Scholar
  39. Tilstone GH, Peters SWM, van der Woerd HJ, Eleveld MA, Ruddick K, Schönfeld W, Krasemann H, Martinez-Vicente V, Blondeau-Patissier D, Röttgers R, Sørensen K, Jørgensen PV, Shutler JD (2012) Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters. Remote Sens Environ 118:320–338CrossRefGoogle Scholar
  40. Twardowski MS, Sullivan JM, Donaghay PL, Zaneveld JRV (1999) Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J Atmos Ocean Technol 16(6):691–707. doi: 10.1175/1520-0426(1999)016<0691:mqotab>;2 CrossRefGoogle Scholar
  41. Van der Linde DW (1998) Protocol for determination of total suspended matter in oceans and coastal zones. CEC-JRC-Ispra Technical note no. I.98:182 ppGoogle Scholar
  42. Yentsch CS (1962) Measurement of visible light absorption by particulate matter in the ocean. Limnol Oceanogr 7(2):207–217CrossRefGoogle Scholar
  43. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45. doi: 10.3354/meps195029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jochen Wollschläger
    • 1
    Email author
  • Maik Grunwald
    • 1
  • Rüdiger Röttgers
    • 1
  • Wilhelm Petersen
    • 1
  1. 1.Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal ResearchInstitute of Coastal ResearchGeesthachtGermany

Personalised recommendations