Ocean Dynamics

, Volume 63, Issue 5, pp 519–531 | Cite as

Evolution of an anticyclonic eddy southwest of Taiwan

  • Tingting Zu
  • Dongxiao Wang
  • Changxiang Yan
  • Igor Belkin
  • Wei Zhuang
  • Ju Chen


Satellite images of sea-surface temperature, surface chlorophyll a concentration, and sea-level anomaly, together with ocean reanalysis data of Asia and Indian–Pacific Ocean (AIPOcean1.0), are utilized to study the three-dimensional characteristics and evolution of an anticyclonic warm eddy adjacent to the southwest coast of Taiwan during October and November 2006. Originated from the Kuroshio intrusion in the Luzon Strait, but unlike previously found westward moving anticyclonic eddies (AE) in the northeastern South China Sea, this AE was so close to the Taiwan coast and stayed where it was formed for over 1 month until it dissipated. Energy analysis is utilized to study the evolution process of the AE, and it shows that the barotropic instability (BTI) and baroclinic instability introduced by the Kuroshio intrusion flow appear to be the main energy sources for the AE. Periodical enhancement/relaxation of local northeasterly monsoon and its associated negative wind stress curl modify the current patterns in this region, reinforce the intraseasonal variability of the Kuroshio intrusion flow, and act together with Kuroshio to form the AE. Eddies detected from AIPOcean1.0 data also show that AEs are most likely to be generated southwest of Taiwan during the transition period of summer monsoon to winter monsoon, and generally, the BTI of Kuroshio intrusion contributes more than the direct wind stress work to the increase of the eddy kinetic energy for the generation and growth of the AEs.


Anticyclonic eddy Kuroshio intrusion Monsoon wind South China Sea Taiwan 



We are grateful for the two anonymous reviewers, who have provided many thoughtful comments and suggestions which led to great improvements of the manuscript. We also thank Gengxin Chen, Xiaopei Lin and Huijie Xue for their helpful discussions, and thank Huijie Xue and Changming Dong for providing their codes of energy calculation and eddy detection. This research work was supported by the 973 program (2011CB403504 and 2010CB950401) and the Guangdong Natural Science Foundation (S2011010001001).


  1. Beckmann A, Böning CW, Brügge B, Stammer D (1994) On the generation and role of eddy variability in the central North Atlantic Ocean. J Geophys Res 99(C10):20381–20391CrossRefGoogle Scholar
  2. Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4:55–88CrossRefGoogle Scholar
  3. Bleck R, Smith LT (1990) A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean. 1. Model development and supporting experiments. J Geophy Res 95(C3):3273–3285CrossRefGoogle Scholar
  4. Böning CW, Budich RG (1992) Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction. J Phys Oceanogr 22(4):361–381CrossRefGoogle Scholar
  5. Cai S, Long X, Wu R, Wang S (2008) Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea. J Mar Sys 74:711–720. doi:10.1016/j.jmarsys.2007.12.008, ISSN 0924-7963CrossRefGoogle Scholar
  6. Centurioni LR, Niiler PP, Lee D-K (2004) Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J Phys Oceanogr 34:113–121CrossRefGoogle Scholar
  7. Chen G, Hou Y, Chu X, Qi P (2010) Vertical structure and evolution of the Luzon Warm Eddy. Chin J Oceanol Limnol 28(5):955–961CrossRefGoogle Scholar
  8. Chen G, Hu P, Hou Y, Chu X (2011a) Intrusion of the Kuroshio into the South China Sea, in September 2008. J Oceanogr 67:439–448CrossRefGoogle Scholar
  9. Chen G, Hou Y, Chu X (2011b) Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res 116:C06018. doi:10.1029/2010JC006716 CrossRefGoogle Scholar
  10. Chen Y-L, Chen H-Y, Lin I, Lee M-A, Chang J (2007) Effects of cold eddy on phytoplankton production and assemblages in Luzon Strait bordering the South China Sea. J Oceanogr 63(4):671–683CrossRefGoogle Scholar
  11. Farris A, Wimbush M (1996) Wind-induced intrusion into the South China Sea. J Oceanogr 52:771–784CrossRefGoogle Scholar
  12. Guo J, Yuan Y, Xiong X, Guo B (2007) Statistics of the mesoscale eddies on both sides of the Luzon Strait. Adv Mar Sci 25(2):139–148Google Scholar
  13. Ivchenko VO, Treguier AM, Best SE (1997) A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. J Phys Oceanogr 27:5–22CrossRefGoogle Scholar
  14. Jia YL, Liu QY (2004) Eddy shedding from the Kuroshio bend at Luzon Strait. J Oceanogr 60:1063–1069CrossRefGoogle Scholar
  15. Jia YL, Liu QY, Liu W (2005) Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait. J Oceanogr 61:1017–1027CrossRefGoogle Scholar
  16. Li L, Nowlin WD Jr, Su JL (1998) Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Res I 45:1469–1482CrossRefGoogle Scholar
  17. Liang WD, Tang TY, Yang YJ, Ko MT, Chuang WS (2003) Upper-ocean currents around Taiwan. Deep-Sea Res II 50:1085–1105CrossRefGoogle Scholar
  18. Lin I-I, Lien C-C, Wu C-R, Wong GTF, Huang C-W, Chiang T-L (2010) Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring. Geophys Res Lett 37:L16602. doi:10.1029/2010GL043872 Google Scholar
  19. Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7(2):157–167CrossRefGoogle Scholar
  20. Metzger EJ, Hurlburt HE (2001) The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J Phys Oceanogr 31(7):1712–1732CrossRefGoogle Scholar
  21. Nan F, He Z, Zhou H, Wang D (2011a) Three long-lived anticyclonic eddies in the northern South China Sea. J Geophys Res 116:C05002. doi:10.1029/2010JC006790 CrossRefGoogle Scholar
  22. Nan F, Xue H, Chai F, Shi L, Shi M, Guo P (2011b) Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn. doi:10.1007/s10236-011-0426-3 Google Scholar
  23. Nan F, Xue H, Xiu P, Chai F, Shi M, Guo P (2011c) Oceanic eddy formation and propagation southwest of Taiwan. J Geophys Res 116:C12045. doi:10.1029/2011JC007386 CrossRefGoogle Scholar
  24. Nencioli F, Dong C, Dickey T, Washburn L, McWilliams J (2010) A vector geometry based eddy detection algorithm and its application to high-resolution numerical model products and high-frequency radar surface velocities in the Southern California Bight. J Atmos Ocean Tech 27(3):564–579. doi:10.11.1175/2009JTECHO725.1 CrossRefGoogle Scholar
  25. Pedlosky J (1987) Geophysical fluid dynamics. Springer, New York, 710 ppCrossRefGoogle Scholar
  26. Qu TD (2000) Upper-layer circulation in the South China Sea. J Phys Oceanogr 30(6):1450–1460CrossRefGoogle Scholar
  27. Sheu W-J, Wu C-R, Oey L-Y (2010) Blocking and westward passage of eddies in the Luzon Strait. Deep-Sea Res II 57(19–20):1783–1791CrossRefGoogle Scholar
  28. Teague WJ, Carron MJ, Hogan MJ (1990) A comparison between the generalized digital environmental model and Levitus climatologies. J Geophy Res 95:7167–7183CrossRefGoogle Scholar
  29. Wang D, Xu H, Lin J, Hu J (2008a) Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J Oceanogr 64(6):925–935CrossRefGoogle Scholar
  30. Wang G, Chen D, Su J (2008b) Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J Phys Oceanogr 38(3):726–732CrossRefGoogle Scholar
  31. Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett 30(21):2121. doi:10.1029/2003GL018532 CrossRefGoogle Scholar
  32. Wang J, Chern C-S (1987a) The warm-core eddy in the northern South China Sea I. Preliminary observations on the warm-core eddy. Acta Oceanogr Taiwan 18:92–103Google Scholar
  33. Wang J, Chern C-S (1987b) The warm-core eddy in the northern South China Sea II. A simple mechanism for the establishment and development of the warm-core eddy. Acta Oceanogr Taiwan 18:104–113Google Scholar
  34. Wang J, Chern C-S (1988) On the Kuroshio branch in the Taiwan Strait during wintertime. Prog Oceanogr 21(3–4):469–491Google Scholar
  35. Wu CR, Tang TY, Lin SF (2005) Intra-seasonal variation in the velocity field of the northeastern South China Sea. Cont Shelf Res 25(17):2075–2083CrossRefGoogle Scholar
  36. Wu CR, Chiang TL (2007) Mesoscale eddies in the northern South China Sea. Deep Sea Res II. doi:10.1016/j.dsr2.2007.05.008 Google Scholar
  37. Yan C, Zhu J, Xie J (2010) An ocean reanalysis system for the joining areas of Asia and Indian–Pacific Ocean. Atmos Oceanic Sci Lett 3(2):81–86Google Scholar
  38. Yuan DL, Han WQ, Hu DX (2006) Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res 111:C11007. doi:10.1029/2005JC003412 CrossRefGoogle Scholar
  39. Yuan DL, Han WQ, Hu DX (2007) Anti-cyclonic eddies northwest of Luzon in summer–fall observed by satellite altimeters. Geophys Res Lett 34(13):L13610. doi:10.1029/2007GL029401 CrossRefGoogle Scholar
  40. Zheng Q, Tai C-K, Hu J, Lin H, Zhang R-H, Su F-C, Yang X (2011) Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J Oceanogr 67(4):365–376CrossRefGoogle Scholar
  41. Zhuang W, Du Y, Wang D, Xie Q, Xie S-P (2010a) Pathways of mesoscale variability in the South China Sea. Chin J Oceanol Limnol 28(5):1055–1067. doi:10.1007/s00343-010-0035-x CrossRefGoogle Scholar
  42. Zhuang W, Xie S-P, Wang D, Taguchi B, Aiki H, Sasaki H (2010b) Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res 115:C04010. doi:10.1029/2009JC005647 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tingting Zu
    • 1
  • Dongxiao Wang
    • 1
  • Changxiang Yan
    • 2
  • Igor Belkin
    • 3
  • Wei Zhuang
    • 1
  • Ju Chen
    • 1
  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.International Center for Climate and Environmental Science, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations