Ocean Dynamics

, Volume 63, Issue 7, pp 777–791 | Cite as

Reconstruction of the upper ocean 3D dynamics from high-resolution sea surface height

  • Aurelien L. PonteEmail author
  • Patrice Klein
Part of the following topical collections:
  1. Topical Collection on the 4th International Workshop on Modelling the Ocean in Yokohama, Japan 21–24 May 2012


The present study investigates the reconstruction of the 3D dynamics of a turbulent mesoscale eddy field driven at a depth by a baroclinic instability of the Phillips type. It uses a high-resolution primitive equation simulation as a testbed. The method of reconstruction is based on potential vorticity principles and extends an earlier approach (Lapeyre and Klein, J Phys Oceanogr 36:165–176, 2006) to a regime where the signature of surface density anomalies on the dynamics is weak. The crux and the originality of the reconstruction lie in the estimation from sea surface height and surface density anomalies of the interior quasigeostrophic potential vorticity (PV) anomalies and its subsequent inversion. The estimation of PV anomalies relies on the vertical correlation between PV anomalies and on the knowledge on stratification and horizontal gradients of background PV. PV anomalies are accurately estimated over the first 500 m of the water column and over a wide range of wavenumbers. Density anomalies play a minor role in the PV estimation, though their omission leads to an overestimation of PV by a factor of less than 2 at scales of order 20 km and less. Inversion of the estimated PV leads to a geostrophic streamfunction which in turn provides reliable reconstructions of the relative vorticity and vertical velocity (via the omega equation).


Altimetry Potential vorticity inversion Quasigeostrophy 



This work is supported by IFREMER, CNRS (FRANCE), the Agence Nationale pour la Recherche (contracts nos. ANR-05-CIGC-010 and ANR-09-BLAN-0365-02). Simulations reported here were done on the Earth Simulator (Yokohama, Japan) through a M.O.U. signed between IFREMER and JAMSTEC. This work is part of the Labex Mer, axe 1: “the ocean engine at very high resolution.”


  1. Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley series in probability and statistics, Wiley, New YorkGoogle Scholar
  2. Bhaskar TVSU, Rahman SH, Pavan ID, Ravichandran M, Nayak S (2009) Comparison of AMSR-E and TMI sea surface temperature with Argo near-surface temperature over the Indian Ocean. Int J Remote Sens 30(10):2669–2684CrossRefGoogle Scholar
  3. Bishop CH, Thorpe AJ (1994) Potential vorticity and the electrostatics analogy: quasi-geostrophy theory. Q J R Meteorol Soc 120:713–731CrossRefGoogle Scholar
  4. Blumen W (1982) Wave-interactions in quasi-geostrophic uniform potential vorticity flow. J Atmos Sci 39:2388–2396CrossRefGoogle Scholar
  5. Charney JG (1971) Geostrophic turbulence. J Atmos Sci 28:1087–1095CrossRefGoogle Scholar
  6. Emery WJ, Thomson RE (2001) Data analysis methods in physical oceanography, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  7. Gentemann CL, Donlon CJ, Stuart-Menteth A, Wentz FJ (2003) Diurnal signals in satellite sea surface temperature measurements. Geophys Res Lett 30(3):1140. doi: 10.1029/2002GL016291 CrossRefGoogle Scholar
  8. Gill AE (1982) Atmosphere-ocean dynamics. Academic, San DiegoGoogle Scholar
  9. Held IM, Pierrehumbert RT, Garner ST, Swanson KL (1995) Surface quasi-geostrophic dynamics. J Fluid Mech 282:1–20CrossRefGoogle Scholar
  10. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111(470):877–946CrossRefGoogle Scholar
  11. Hua BL, Haidvogel DB (1986) Numerical simulations of the vertical structure of quasi-geotrophic turbulence. J Atmos Sci 43(23):2923–2936CrossRefGoogle Scholar
  12. Isern-Fontanet J, Chapron B, Lapeyre G, Klein P (2006) Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys Res Lett 33:L24608. doi: 10.1029/2006GL027801 CrossRefGoogle Scholar
  13. Klein P, Hua BL, Lapeyre G, Capet X, Gentil SL, Sasaki H (2008) Upper ocean turbulence from high-resolution 3D simulations. J Phys Oceanogr 38:1748–1762CrossRefGoogle Scholar
  14. Klein P, Isern-Fontanet J, Lapeyre G, Roullet G, Danioux E, Chapron B, Gentil SL, Sasaki H (2009) Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys Res Lett 36:L12603CrossRefGoogle Scholar
  15. LaCasce JH, Mahadevan A (2006) Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J Mar Res 64:695–721CrossRefGoogle Scholar
  16. Lapeyre G (2009) What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J Phys Oceanogr 39:2857–2874CrossRefGoogle Scholar
  17. Lapeyre G, Klein P (2006) Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J Phys Oceanogr 36:165–176CrossRefGoogle Scholar
  18. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parametrization. Rev Geophys 32(4):363–403CrossRefGoogle Scholar
  19. Lumpkin R, Elipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res 115:C12017. doi:10.1029/2010JC006338CrossRefGoogle Scholar
  20. Phillips NA (1954) Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6:273–286CrossRefGoogle Scholar
  21. Qiu B, Chen S (2005) Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. J Phys Oceanogr 35:458–473CrossRefGoogle Scholar
  22. Roullet G, Klein P (2010) Cyclone-anticyclone asymmetry in geophysical turbulence. Phys Rev Lett 104:218501CrossRefGoogle Scholar
  23. Roullet G, McWilliams JC, Capet X, Molemaker MJ (2012) Properties of steady geostrophic turbulence with isopycnal outcropping. J Phys Oceanogr 42:18–38CrossRefGoogle Scholar
  24. Sasaki H, Klein P (2012) SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J Phys Oceanogr 42:1233–1241CrossRefGoogle Scholar
  25. Scott RB, Furnival DG (2012) Assessment of traditional and new eigenfunction bases applied to extrapolation of surface geostrophic current time series to below the surface in an idealized primitive equation simulation. J Phys Oceanogr 42:165–178CrossRefGoogle Scholar
  26. Shcheptkin AF, McWilliams JC (2005) The regional ocean modeling system: a split-explicit, free-surface, topography-following coordinates ocean model. Ocean Model 9:347–404CrossRefGoogle Scholar
  27. Smith KS (2007) The geography of linear baroclinic instability in earth’s oceans. J Mar Res 65:655–683CrossRefGoogle Scholar
  28. Smith KS, Vallis GK (2001) The scales and equilibration of Midocean eddies: freely evolving flow. J Phys Oceanogr 31:554–571CrossRefGoogle Scholar
  29. Smith KS, Vanneste J (2013) A surface-aware projection basis for quasigeostrophic flow. J Phys Oceanogr 43:548–562CrossRefGoogle Scholar
  30. Traon PYL, Klein P, Hua BL, Dibarboure G (2008) Do altimeter wavenumber spectra agree with the interior or surface quasigeotrophic theory? J Phys Oceanogr 38:1137–1142CrossRefGoogle Scholar
  31. Tulloch R, Smith KS (2009) Quasigeotrophic turbulence with explicit surface dynamics: application to the atmospheric energy spectrum. J Atmos Sci 66:450–467CrossRefGoogle Scholar
  32. Vallis GK (2006) Atmospheric and oceanic fluid dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Xu Y, Fu L (2012) The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J Phys Oceanogr 42:2229–2233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique des OcéansUMR 6523 Ifremer-CNRS-UBO-IRDPlouzanéFrance

Personalised recommendations