Ocean Dynamics

, Volume 63, Issue 5, pp 577–587 | Cite as

Contrasting the evolution between two types of El Niño in a data assimilation model

  • Chau-Ron WuEmail author
  • Li-Chiao Wang
Part of the following topical collections:
  1. Topical Collection on the 4th International Workshop on Modelling the Ocean in Yokohama, Japan 21–24 May 2012


Simulation outputs were used to contrast the distinct evolution patterns between two types of El Niño. The modeled isotherm depth anomalies closely matched satellite sea surface height anomalies. Results for the El Niño Modoki (central Pacific El Niño) corresponded well with previous studies which suggested that thermocline variations in the equatorial Pacific contain an east–west oscillation. The eastern Pacific El Niño experienced an additional north–south seesaw oscillation between approximately 15° N and 15° S. The wind stress curl pattern over the west-central Pacific was responsible for the unusual manifestation of the eastern Pacific El Niño. The reason why the 1982/1983 El Niño was followed by a normal state whereas a La Niña phase developed from the 1997/1998 El Niño is also discussed. In 1997/1998, the Intertropical Convergence Zone (ITCZ) retreated faster and easterly trade winds appeared immediately after the mature El Niño, cooling the sea surface temperature in the equatorial Pacific and generating the La Niña event. The slow retreat of the ITCZ in 1982/1983 terminated the warm event at a much slower rate and ultimately resulted in a normal phase.


Eastern Pacific El Niño Central Pacific El Niño (El Niño Modoki) Wind stress curl pattern 



The authors would like to thank the Editor, Dr. Yukio Masumoto, and the anonymous reviewers for their careful review of the manuscript and detailed suggestions to improve the manuscript. The authors are also grateful to D. J. Shea and colleagues from the NCAR for assistance in processing the GODAS outputs. Authors CRW and LCW were supported by the National Science Council, Taiwan, under grants NSC 100-2119-M-001-029-MY5 and NSC 101-2917-I-003-002.


  1. Ashok K, Behera S, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112, C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11–15Google Scholar
  3. Braganza K (2008) Seasonal climate summary southern hemisphere (autumn 2007). La Niña emerges as a distinct possibility in 2007. Aust Met Mag 57:65–75Google Scholar
  4. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832CrossRefGoogle Scholar
  5. Clarke AJ, Gorder SV, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37:1077–1091CrossRefGoogle Scholar
  6. Deser C, Wallace JM (1990) Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Clim 3:1254–1281CrossRefGoogle Scholar
  7. Conkright ME, Levitus S, O’Brien T, Boyer TP, Stephens C, Johnson D, Baranova O, Antonov J, Gelfeld R, Rochester J, Forgy C (1999) World ocean database 1998 CD-ROM data set documentation, Version 2.0. NODC Internal Report 14, 116ppGoogle Scholar
  8. Ji M, Leetmaa A (1997) Impact of data assimilation on ocean initialization and El Niño prediction. Mon Wea Rev 125:742–753CrossRefGoogle Scholar
  9. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  10. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a tripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  11. Kanamitsu M, Ebisuzaki W, Woolen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  12. Kao HY, Yu JY (2009) Contrasting eastern–Pacific and central–Pacific types of El Niño. J Clim 22:615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  13. Kessler WS (1990) Observations of long Rossby waves in the northern tropical Pacific. J Geophys Res 95(C4):5183–5217CrossRefGoogle Scholar
  14. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J et al (2001) The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull Amer Meteor Soc 82:247–267Google Scholar
  15. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  16. Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239CrossRefGoogle Scholar
  17. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32, L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  18. Lengaigne M, Vecchi GA (2009) Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn. doi: 10.1007/s00382-009-0562-3
  19. Lukas R (2001) Pacific equatorial currents. In: Steele JH, Thorpe SA, Turekian KA (eds) Encyclopedia of ocean sciences. Academic, LondonGoogle Scholar
  20. Luo JJ, Yamagata T (2001) Long-term El Niño–Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J Geophys Res 106:22211–22227CrossRefGoogle Scholar
  21. McPhaden MJ, Delcroix T, Hanawa K, Kuroda Y, Meyers G, Picaut J, Swenson M (2001) The El Niño/Southern oscillation (ENSO) observing system. Observing the ocean in the 21st century. In: Koblinsky CJ and Smith NR (Eds) Australian Bureau of Meteorology, p 231–246Google Scholar
  22. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559CrossRefGoogle Scholar
  23. Philander SGH (1985) El Niño and La Niña. J Atmos Sci 42:652–662CrossRefGoogle Scholar
  24. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Wea Rev 110:354–384CrossRefGoogle Scholar
  25. Wang B, Wu R, Lukas R (1999) Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J Meteor Soc Japan 77:1–16Google Scholar
  26. Wang LC, Wu CR (2012) Modulation of the equatorial currents by the two types of El Niño events. Atmosphere–Ocean. doi: 10.1080/07055900.2012.744294
  27. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonal adjusted principal component index. Proc. 17th Climate Diagnostics Workshop. Norman, OK, NOAA/NMC/CAC, 52–57Google Scholar
  28. Wyrtki K (1974) Sea level and the seasonal fluctuations of the equatorial currents in the western Pacific Ocean. J Phys Oceanogr 4:91–103CrossRefGoogle Scholar
  29. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112, D13106. doi: 10.1029/2006JD007654 CrossRefGoogle Scholar
  30. Yu JY, Kim ST (2010) Three evolution patterns of Central–Pacific El Niño. Geophys Res Lett 37, L08706. doi: 10.1029/2010GL042810 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth SciencesNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations