Ocean Dynamics

, Volume 63, Issue 2–3, pp 209–224 | Cite as

Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven

  • Sönke DangendorfEmail author
  • Christoph Mudersbach
  • Thomas Wahl
  • Jürgen Jensen


This paper addresses the role of meteorological forcing on mean sea level (MSL) variability at the tide gauge of Cuxhaven over a period from 1871 to 2008. It is found that seasonal sea level differs significantly from annual means in both variability and trends. The causes for the observed differences are investigated by comparing to changes in wind stress, sea level pressure and precipitation. Stepwise regression is used to estimate the contribution of the different forcing factors to sea level variability. The model validation and sensitivity analyses showed that a robust and timely independent estimation of regression coefficients becomes possible if at least 60 to 80 years of data are available. Depending on the season, the models are able to explain between 54 % (spring, April to June) and 90 % (winter, January to March) of the observed variability. Most parts of the observed variability are attributed to changes in zonal wind stress, whereby the contribution of sea level pressure, precipitation and meridional wind stress is rather small but still significant. On decadal timescales, the explanatory power of local meteorological forcing is considerable weaker, suggesting that the remaining variability is attributed to remote forcing over the North Atlantic. Although meteorological forcing contributes to linear trends in some sub-periods of seasonal time series, the annual long-term trend is less affected. However, the uncertainties of trend estimation can be considerably reduced, when removing the meteorological influences. A standard error smaller than 0.5 mm/year requires 55 years of data when using observed MSL at Cuxhaven tide gauge. In contrast, a similar standard error in the meteorologically corrected residuals is reached after 32 years.


Mean sea level variability German Bight Meteorological forcing Sea level rise 



This study is based on investigations, which have been partially made in the framework of the KLIWAS research project. Therefore, we highly acknowledge Anette Ganske, Hartmut Heinrich, Sylvin Müller Navarra, Birgit Klein and Jens Möller from the BSH and Gudrun Rosenhagen, Birger Tinz and Katharina Bülow from the German Weather Service (DWD) for the fruitful discussions and the funding of the project. We are thankful to two anonymous reviewers who helped to improve an earlier version of the manuscript. We are further grateful to the Waterways and Shipping Administration of the Federal Government for providing us the tide gauge data.


  1. Albrecht F, Weisse R (2012) Pressure effects on past regional sea level trends and variability in the German Bight. Ocean Dyn 62:1169–1186. doi: 10.1007/s10236-012-0557-1 CrossRefGoogle Scholar
  2. Albrecht F, Wahl T, Jensen J, Weisse R (2011) Determining sea level change in the German Bight. Ocean Dyn 61:2037–2050. doi: 10.1007/s10236-011-0462-z CrossRefGoogle Scholar
  3. Arns A, van Eynatten H, Häußling R, van Riesen D, Schüttrumpf H, Jensen J (2011) Developing sustainable coastal protection- and management strategies for Schleswig-Holstein’s Halligen Considering Climate Changes (ZukunftHallig), 5th International Short Conference on Applied Coastal Research, Aachen, 2011Google Scholar
  4. Baart F, van Gelder PHAJM, de Ronde J, van Koningsveld M, Wouters B (2012) The effect of the 18.6-year lunar nodal cycle on regional sea level rise estimates. J Coast Res 28:511–516. doi: 10.2112/JCOASTRES-D-11-00169.1 CrossRefGoogle Scholar
  5. Barbosa SM, Fernandez MJ, Silva ME (2004) Nonlinear sea level trends from European tide gauge records. Ann Geoph 22:1465–1472CrossRefGoogle Scholar
  6. Bindoff NL, Willebrand J, Artale V et al (2007) Observations: oceanic climate change and sea level. In: Climate change 2007. In: Solomon S, Qin D, Manning M et al (eds) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  7. Calafat FM, Chambers DP, Tsimplis MN (2012) Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022:10.1029/2012JC008285Google Scholar
  8. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period. J Clim 17:2609–2625CrossRefGoogle Scholar
  9. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L10602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  10. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys. doi: 10.1007/s10712-011-9119-1
  11. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) Review article—the twentieth century reanalysis project. Quarter Journal of the Royal Meterological Society 137:1–28CrossRefGoogle Scholar
  12. Dangendorf S, Wahl T, Hein H, Jensen J, Mai S, Mudersbach C (2012) Mean sea level variability and influence of the North Atlantic oscillation on long-term trends in the German Bight. Water 4:170–195. doi: 10.3390/w4010170, ISSN 2073-4441CrossRefGoogle Scholar
  13. Douglas BC (1991) Global sea level rise. J Geophys Res 96(C4):6981–6992. doi: 10.1029/91JC00064 CrossRefGoogle Scholar
  14. Haigh ID, Nicholls RJ, Wells NC (2009) Mean sea-level trends around the English Channel over the 20th century and their wider context. Cont Shelf Res 29(17):2083–2098CrossRefGoogle Scholar
  15. Haigh ID, Nicholls RJ, Wells NC (2010) Assessing changes in extreme sea levels: application to the English Channel, 1900–2006. Cont Shelf Res 9:1042–1055. doi: 10.1016/j.csr.2010.02.002 CrossRefGoogle Scholar
  16. Haigh ID, Elliot M, Pattiaratchi C (2011) Global Influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J Geophys Res 116:C06025. doi: 10.1029/2010JC006645 CrossRefGoogle Scholar
  17. Heyen H, Zorita E, von Storch H (1996) Statistical downscaling of monthly mean North Atlantic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 48:312–323CrossRefGoogle Scholar
  18. Huenicke B, Luterbacher J, Pauling A, Zorita E (2008) Regional differences in winter sea level variations in the Baltic Sea for the past 200 years. Tellus A 60:384–393CrossRefGoogle Scholar
  19. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  20. IKÜS (2008) Aufbau eines integrierten Höhenüberwachungssystems in Küstenregionen durch Kombination höhenrelevanter Sensorik (final report). Online available from:
  21. IPCC (2007) Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, p 996Google Scholar
  22. Jensen J (1985) Über instationäre Entwicklungen der Wasserstände an der deutschen Nordseeküste. Mitteilungen Leichtweiß-Institut der TU Braunschweig 88:151–319 (in German)Google Scholar
  23. Jensen J, Hofstede J, Kunz H, De Ronde J, Heinen P, Siefert W (1993) Long term water level observations and variations. Coastal Zone '93, special volume "Coastlines of the Southern North Sea"Google Scholar
  24. Jensen J, Mudersbach C (2007) Zeitliche Änderungen in den Wasserstandszeitreihen an den deutschen Küsten. In: Glaser R, Schenk W, Voigt J, Wießner R, Zepp H, Wardenga U (eds) Berichte zu Deutschen Landeskunde, Themenheft: Küstenszenarien, vol 2, 81st edn. Selbstverlag Deutsche Akademie für Landeskunde E.V, Leipzig, Germany, pp 99–112, in GermanGoogle Scholar
  25. Jevrejeva S, Moore JC, Woodworth PL, Grinsted A (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus A 57:183–193CrossRefGoogle Scholar
  26. Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi: 10.1029/2005JC003229 CrossRefGoogle Scholar
  27. Katsman CA, Sterl A, Beersma JJ et al (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—The Netherlands as an example. Clim Chang. doi: 10.1007/s10584-011-0037-5
  28. Kolker AS, Hameed S (2007) Meteorogically driven trends in sea level rise. Geophys Res Lett 34. doi: 10.1029/2007GL031814
  29. Krüger O, Schenk F, Feser F, Weisse R (2012) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim. doi: 10.1175/JCLI-D-12-00309.1
  30. Merrifield MA, Merrifield SA, Mitchum GT (2009) An anomalous recent acceleration of global sea level rise. J Clim 22:5772–5781. doi: 10.1175/2009JCLI2985.1 Google Scholar
  31. Miller L, Douglas BC (2007) Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys Res Lett 34:L16602. doi: 10.1029/2007GL030862 CrossRefGoogle Scholar
  32. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478. doi: 10.1038/ngeo544 CrossRefGoogle Scholar
  33. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520CrossRefGoogle Scholar
  34. Pugh D (2004) Changing sea levels: Effects of tide, weather and climate, 1st edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  35. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi-empirical sea level projections. Clim Dyn 39:861–875Google Scholar
  36. Sallenger AH, Doran KS, Howd PA (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Clim Change. doi: 10.1038/nclimate1597
  37. Schott F (1966) Der Oberflächensalzgehalt in der Nordsee. Dt. Hydrogr. Zt. (suppl. A9), pp. 1–58Google Scholar
  38. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2011) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  39. Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008. doi: 10.1029/2010JC006492
  40. Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59:249–260CrossRefGoogle Scholar
  41. Tsimplis MN, Woodworth PL (1994) The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J Geophys Res 99(C8):16,031–16,039. doi: 10.1029/94JC01115 CrossRefGoogle Scholar
  42. Tsimplis MN, Spencer NE (1997) Collection and analysis of monthly mean sea level data in the Mediterranean and Black Sea. J Coast Res 13:534–544Google Scholar
  43. Tsimplis MN, Josey SA (2001) Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys Res Lett 28:803–806CrossRefGoogle Scholar
  44. Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather R, Shaw AGP, Woodworth P, Challenor P, Blackman D, Pert F, Yan Z, Jerjeva S (2005) Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. Philosophical transactions. Mathematical, Physical and Engineering Sciences (Series A 363:1329–1358. doi: 10.1098/rsta.2005.1571 CrossRefGoogle Scholar
  45. Tsimplis MN, Shaw AGP, Flather RA, Woolf DK (2006) The influence of the North Atlantic Oscillation on sea level around the northern European coasts reconsidered: the thermosteric effects. Philos Trans R Soc A 364:845–856CrossRefGoogle Scholar
  46. Ullmann A, Monbaliu J (2010) Changes in atmospheric circulation over the North Atlantic and sea surge variations along the Belgian coast during the twentieth century. Int J Clim 30:558–568. doi: 10.1002/joc.1904 Google Scholar
  47. Von Storch HV, Zwiers FW (1999) Statistical analysis in climate research, 1st edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  48. Wahl T, Jensen J, Frank T (2010) On analysing sea level rise in the German Bight since 1844. Nat Hazards Earth Syst Sci 10:171–179. doi: 10.5194/nhess-10-171-2010 CrossRefGoogle Scholar
  49. Wahl T, Jensen J, Frank T, Haigh I (2011) Improved estimates of mean sea level changes in the German Bight over the last 166 years. Ocean Dyn 61:701–715. doi: 10.1007/s10236-011-0383-x CrossRefGoogle Scholar
  50. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (under review) Observed mean sea level changes around the North Sea coastlines from 1800 to present. Earth Science ReviewsGoogle Scholar
  51. Wakelin SL, Woodworth PL, Flather RA, Williams JA (2003) Sea level dependence on the NAO over the NW European Continental Shelf. Geophys Res Lett 30(7):1403. doi: 10.1029/2003GL017041 CrossRefGoogle Scholar
  52. Weisse R, von Storch H (2009) Marine climate and climate change: Storms, wind waves and storm surges, 1st edn Springer, Heidelberg, GermanyGoogle Scholar
  53. Woodworth PL (1987) Trends in U.K. mean sea level. Mar Geod 11:57–87CrossRefGoogle Scholar
  54. Woodworth PL (1990) A search for acceleration in records of European mean sea level. Int J Clim 10:129–143CrossRefGoogle Scholar
  55. Woodworth PL (1991) The permanent service for mean sea level and the global sea level observing system. J Coast Res 7(3):699–710Google Scholar
  56. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27(7):935–946Google Scholar
  57. Woodworth P, White NJ, Jevrejeva S, Holgate SJ, Chuch JA, Gehrels WR (2008) Evidence for the accelerations of sea level on multi-decade and century time scales. Int J Climatol 29:777–789CrossRefGoogle Scholar
  58. Woodworth PL, White NJ, Jevrejeva S, Holgate SJ, Gehrels WR (2009) Evidence for the accelerations of sea level on multi-decade and century timescales. Int J Climatol 29(6):777–789. doi: 10.1002/joc.1771 CrossRefGoogle Scholar
  59. Woodworth PL, Pouvreau N, Wöppelmann G (2010) The gyre-scale circulation of the North Atlantic and sea level at Brest. Ocean Sci 6:185–190. doi: 10.5194/os-6-185-2010 CrossRefGoogle Scholar
  60. Woodworth PL, Menéndez M, Gehrels WR (2011) Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels. Surv Geophy 32:602–618. doi: 10.1007/s10712-011-9112-8 Google Scholar
  61. Woolf DK, Shaw AGP, Tsimplis MN (2003) The influence of the North Atlantic Oscillation on sea level variability. The Global Atmosphere and Ocean System 9:145–167Google Scholar
  62. Yan Z, Tsimplis MN, Woolf D (2004) Analysis of the relationship between the North Atlantic Oscillation and sea level changes in Northwest Europe. Int J Climatol 24:743–758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sönke Dangendorf
    • 1
    Email author
  • Christoph Mudersbach
    • 1
  • Thomas Wahl
    • 1
    • 2
  • Jürgen Jensen
    • 1
  1. 1.Research Institute for Water and Environment (fwu)University of SiegenSiegenGermany
  2. 2.Institute of Advanced Studies, Research Group of Civil SecurityUniversity of SiegenSiegenGermany

Personalised recommendations