Ocean Dynamics

, Volume 63, Issue 2–3, pp 131–141 | Cite as

Predictability of currents on a mesotidal estuary (Ria de Vigo, NW Iberia)

  • Pablo CerralboEmail author
  • Manel Grifoll
  • Manuel Espino
  • Jaime López


In this contribution, the implementation, validation and sensitivity analysis of an operational forecasting system (three-dimensional hydrostatic model) in the Ría de Vigo is presented. A set of sensitivity tests for different atmospheric and hydrodynamic typical periods was performed. The goal is to determine the relative importance of forcing mechanisms in order to evaluate the source of errors in predictions. Previously, validations for three periods of about 15 days were compared with measured data. Sea-level evolution reveals low errors and correlation values close to 1. Surface velocities were compared with high-frequency radar and horizontal Acoustic Doppler Current Profiler data, showing acceptable results on radar area, where tidal and wind circulation patterns are well reproduced by the model. Conductivity, temperature, and depth profiles were used to validate simulated temperature and salinity. While modelled temperature profiles show good agreement with measured profiles, eventual errors are detected on salinity. The sensitivity analysis took three variables into account: sea level, currents at open boundary conditions, and winds (two different configurations). The results show that the most important source of errors on simulated surface currents is wind. Errors on open boundary conditions seem to be limited on the outermost part of the Ría. Although the results presented mainly focus on the Ría de Vigo, the method and conclusions may be applied to other mesotidal estuaries. Moreover, this work will allow a more effective operational system focused on coastal management to be performed.


3D Hydrodynamic model Predictability of currents Estuary Sensitivity analysis Ría de Vigo 



This work was supported by a FPI-UPC pre-doctoral fellowship from European project FIELD_AC (FP7-SPACE-2009-1-242284 FIELD_AC). We would like to thank the Spanish National Ports and Harbours Authority (Puertos del Estado,, as well as other public bodies and companies like MeteoGalicia, Observatorio Oceanografico RAIA (, Intecmar, University of Vigo, and the Port Authority of Vigo ( for the information provided and their commitment to the study. We thank also the anonymous referees for their valuable comments on the manuscript.


  1. Álvarez I, deCastro M, Gómez-Gesteira M, Prego R (2005) Inter- and intra-annual variability of the salinity and temperature evolution in the Galician RíasBaixas—ocean boundary (northwest Spain). J Geophys Res C 110Google Scholar
  2. Balas L, Özhan E (2001) Applications of a 3D numerical model to circulation in coastal waters. Coast Eng 43(2):99–120CrossRefGoogle Scholar
  3. Blain CA, Cambazoglu MK, Linzell RS, Dresback KM, Kolar RL (2011) The predictability of near-coastal currents using a baroclinic unstructured grid model. Ocean Dyn 62(3):411–437CrossRefGoogle Scholar
  4. Cáceres-Martínez J, Figueras A (1998) Distribution and abundance of mussel (Mytilus galloprovincialis Lmk) larvae and post-larvae in the Ria de Vigo (NW Spain). J Exp Mar Biol Ecol 229(2):277–287CrossRefGoogle Scholar
  5. Darriba S (2001) Biología de la navaja (Ensis arcuatus Jeffreys, 1865) de la Ria de Vigo (N.O. de España): Crecimiento y reproducción. Ph.D. thesis. Universidad de A CoruñaGoogle Scholar
  6. Dyer KR (1997) Estuaries: A physical introduction. Wiley, New York, 195ppGoogle Scholar
  7. Fraga F, Margalef R (1979) Las Rias Gallegas. In: Estudio y explotación del mar en Galicia. University of Santiago de Compostela, pp.101–122Google Scholar
  8. Fraga F (1981) Upwelling off the Galician Coast, northwest Spain. Coast Upwelling, pp 176–182Google Scholar
  9. Fukumoto T, Kobayashi N (2005) Bottom stratification and water exchange in enclosed bay with narrow entrance. J Coast Res 21:135–145CrossRefGoogle Scholar
  10. Gomez-Gesteira M, Montero P, Prego R, Taboada J, Leitao P, Ruiz-Villarreal M, Neves R, Perez-Villar V (1999) A two-dimensional particle tracking model for pollution dispersion in A Coruña and Vigo Rias (NW Spain). Oceanol Acta 22(2):167–177CrossRefGoogle Scholar
  11. Grifoll M, Fontán A, Ferrer L, Mader J, González M, Espino M (2009) 3D hydrodynamic characterisation of a meso-tidal harbour: the case of Bilbao (northern Spain). Coast Eng 56:907–918CrossRefGoogle Scholar
  12. Grifoll M, Jordà G, Espino M, Romo J, García-Sotillo M (2011) A management system for accidental water pollution risk in a harbour: the Barcelona case study. J Marine Syst 88:60–73CrossRefGoogle Scholar
  13. Grifoll M, Jordà G, Sotillo M, Ferrer L, Espino M, Sánchez-Arcilla A, Álvarez-Fanjul E (2012) Water circulation forecasting in Spanish harbours. Sci Mar 76:45–61CrossRefGoogle Scholar
  14. Large WC, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parametrization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  15. Marinov D, Norro A, Zaldívar JM (2006) Application of COHERENS model for hydrodynamic investigation of Sacca di Goro coastal lagoon (Italian Adriatic Sea Shore). Ecol Model 193:52–68CrossRefGoogle Scholar
  16. Martín B (2003) Descripción dinámica de la circulación en dos rías baixas: Vigo y Pontevedra, Ph.D. thesis, Universidad de Vigo, 182 ppGoogle Scholar
  17. Mathiot P, Jourdain NC, Barnier B, Gallée H, Molines JM, Sommer J, Penduff T (2012) Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dyn 62(5):701–723CrossRefGoogle Scholar
  18. Montero P (1999) Estudio de la hidrodinámica de la Ría de Vigo mediante un modelo de volúmenes finitos. Ph.D. thesis, Universidad de Santiago de Compostela, 174 ppGoogle Scholar
  19. Montero P, Gómez-Gesteira M, Taboada JJ, Ruiz-Villarreal M, Neves R, Prego R, Pérez-Villar V (1999) On residual circulation of Vigo Ria using a 3D baroclinic model. Bol Inst Esp Oceanogr 15(1–4):31–38Google Scholar
  20. Nogueira E, Pérez FF, Ríos AF (1997) Seasonal patterns and long-term trends in an estuarine upwelling ecosystem (Ría de Vigo, NW Spain). Estuar Coast Shelf Sci 44:285–300CrossRefGoogle Scholar
  21. Penven P, Debreu L, Marchesiello P, McWilliams JC (2006) Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Model 12:157–187CrossRefGoogle Scholar
  22. Penven P, Marchesiello P, Debreu L, Lefevre J (2007) Software tools for pre- and post-processing of oceanic regional simulations. Environ Model Softw 23:660–662CrossRefGoogle Scholar
  23. Pitchai KP, Osalusi E, Ruscoe JP, Side JC, Harris RE, Kerr S (2010) Overview of recent technologies on wave and current measurement in coastal and marine applications. J Oceanogr Mar Sci 1(1):1–10Google Scholar
  24. Rosón G, Álvarez-Salgado XA, Pérez FF (1997) A non stationary box model to determine residual fluxes in a partially mixed estuary, based on both thermohaline properties. Application to the Ría de Arousa (NW Spain). Estuar Coast Shelf Sci 44:249–262CrossRefGoogle Scholar
  25. Shchepetkin AF, McWilliams JC (2005) The regional ocean modeling system: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model 9:347–404CrossRefGoogle Scholar
  26. Shchepetkin AF, McWilliams JC (2009) Correction and commentary for “Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al. J Comp Phys 227:3595–3624, J Comp Phys, 228 (24): 8985–9000Google Scholar
  27. Song Y, Haidvogel DB (1994) A semi-implicit ocean circulation model using a generalized topography—following coordinate system. J Comp Phys 115(1):228–244CrossRefGoogle Scholar
  28. Souto C, Fariña-Busto L, Álvarez E, Rodríguez I (2001) Wind and tide current prediction using a 3D finite difference model in the Ría de Vigo (NW Spain). Sci Mar 65(1):269–276CrossRefGoogle Scholar
  29. Taboada JJ, Prego R, Ruiz-Villarreal M, Gómez-Gesteira M, Montero P, Santos AP, Pérez-Villar V (1998) Evaluation of the seasonal variations in the residual pattern of the Ria of Vigo (NW Spain) by means of a 3D baroclinic model. Estuar Coast Shelf Sci 47:661–670CrossRefGoogle Scholar
  30. Tartinville B, Deleersnijder E, Rancher J (1997) The water residence time in the Mururoa atoll lagoon: sensitivity analysis of a three-dimensional model. Coral Reefs 16:193–203CrossRefGoogle Scholar
  31. Torres López S, Varela RA, Delhez E (2001) Residual circulation and thermohaline distribution of the Ría de Vigo: a 3-D hydrodynamical model. Sci Mar 65(suppl.1):277–289Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pablo Cerralbo
    • 1
    Email author
  • Manel Grifoll
    • 2
  • Manuel Espino
    • 2
  • Jaime López
    • 3
  1. 1.Laboratori d’Enginyeria MarítimaUniversitat Politècnica de Catalunya (LIM/UPC)BarcelonaSpain
  2. 2.Laboratori d’Enginyeria MarítimaUniversitat Politècnica de Catalunya (LIM/UPC) and International Centre of Coastal Resources Research (CIIRC)BarcelonaSpain
  3. 3.SIMO (Soluciones de Ingeniería Marítima Operacional)BarcelonaSpain

Personalised recommendations