Ocean Dynamics

, Volume 63, Issue 1, pp 83–88 | Cite as

Advances in search and rescue at sea

  • Øyvind BreivikEmail author
  • Arthur Addoms Allen
  • Christophe Maisondieu
  • Michel Olagnon
Part of the following topical collections:
  1. Topical Collection on Advances in Search and Rescue at Sea


A topical collection on “Advances in Search and Rescue at Sea” has appeared in recent issues of Ocean Dynamics following the latest in a series of workshops on “Technologies for Search and Rescue and other Emergency Marine Operations” (2004, 2006, 2008, and 2011), hosted by IFREMER in Brest, France. Here, we give a brief overview of the history of search and rescue at sea before we summarize the main results of the papers that have appeared in the topical collection.


Search and rescue (SAR) Trajectory modeling Stochastic Lagrangian ocean models Lagrangian measurement methods Ocean surface currents 



The conference cochairs would like to express their gratitude to the organizers and sponsors: IFREMER’s Service Hydrodynamique et Océano-météo, the Norwegian Meteorological Institute, the US Coast Guard Office of Search and Rescue, JCOMM, Region Bretagne, and the French-Norwegian Foundation. More information about the conference can be found at We are grateful to Springer (publisher of Ocean Dynamics) for taking the topic of SAR into consideration for a special issue. Øyvind Breivik is grateful to The Joint Rescue Coordination Centres of Norway and the Norwegian Navy for their continued support through funding projects that have allowed him to help organize these workshops. The editorial work has also benefited from the European Union FP7 project MyWave (grant no 284455). Thanks finally to Jack Frost, Larry Stone, and Henry Richardson for sharing their immense knowledge of the field of search theory and for helping to unravel the early history of SAR planning.


  1. Abascal A, Castanedo S, Ferna´ndez V, Medina R (2012) Back-tracking drifting objects using surface currents from high-frequency (HF) radar technology. Ocean Dyn (62)7:1073–1089. doi: 10.1007/s10236-012-0546-4 CrossRefGoogle Scholar
  2. Allen A (1996) Performance of GPS/Argos self-locating datum marker buoys (SLDMBs) OCEANS’96. MTS/IEEE, Prospects for the 21st, Century. Conference Proceedings, vol 2. IEEE, pp 857–861. doi: 10.1109/OCEANS.1996.568341
  3. Allen A (2005) Leeway divergence report. Tech. Rep. CG-D-05-05, US coast guard research and development center, 1082 Shennecossett Road, Groton, CT, USAGoogle Scholar
  4. Allen A, Plourde JV (1999) Review of leeway: field experiments and implementation. Tech. Rep. CG-D-08-99, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA. Available through
  5. Barrick D, Fernandez V, Ferrer MI, Whelan C, Breivik Ø (2012) A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dyn 62:725–740. doi: 10.1007/s10236-012-0521-0 CrossRefGoogle Scholar
  6. Berloff PS, McWilliams JC (2002) Material transport in oceanic Gyres. Part II: hierarchy of stochastic models. J Phys Oceanogr 32:797–830CrossRefGoogle Scholar
  7. Bertino L, Lisæter K (2008) The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J Oper Oceanogr 1(2):15–18Google Scholar
  8. Breivik Ø, Olagnon M (eds) (2005) Proceedings of technologies for search, assistance and rescue workshop. Available on request from IFREMER. Brest, France, 18–20 Oct 2004Google Scholar
  9. Breivik Ø, Allen AA (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J Marine Syst 69(1–2):99–113. doi: 10.1016/j.jmarsys.2007.02.010. arXiv:1111.1102 CrossRefGoogle Scholar
  10. Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: the Leeway field method. Appl Ocean Res 33:10. doi: 10.1016/j.apor.2011.01.005. arXiv:1111.0750 CrossRefGoogle Scholar
  11. Breivik Ø, Allen A, Maisondieu C, Roth J-C, Forest B (2012a) The Leeway of shipping containers at different immersion levels. Ocean Dyn 62:741–752. doi: 10.1007/s10236-012-0522-z. arXiv:1201.0603 CrossRefGoogle Scholar
  12. Breivik Ø, Bekkvik TC, Ommundsen A, Wettre C (2012b) BAKTRAK: backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dyn 62:239–252. doi: 10.1007/s10236-011-0496-2. arXiv:1111.0756 CrossRefGoogle Scholar
  13. Chapline W (1960) Estimating the drift of distressed small craft. Tech. Rep. 2, US Coast Guard AcademyGoogle Scholar
  14. Chen C, Limeburner R, Gao G, Xu Q, Qi J, Xue P, Lai Z, Lin H, Beardsley R, Owens B, Carlson B (2012) FVCOM model estimate of the location of Air France 447. Ocean Dyn 62:943–952. doi: 10.1007/s10236-012-0537-5 CrossRefGoogle Scholar
  15. Daniel P, Jan G, Cabioch F, Landau Y, Loiseau E (2002) Drift modeling of cargo containers. Spill Sci Technol Bull 7(5–6):279–288CrossRefGoogle Scholar
  16. Davidson FJM, Allen A, Brassington GB, Breivik Ø, Daniel P, Kamachi M, Sato S, King B, Lefevre F, Sutton M, Kaneko H (2009) Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanogr 22(3):176–181. doi: 10.5670/oceanog.2009.76 CrossRefGoogle Scholar
  17. Davis RE (1985) Drifter observations of coastal surface currents during CODE: the method and descriptive view. J Geophys Res 90(C3):4741–4755CrossRefGoogle Scholar
  18. De Dominicis M, Leuzzi G, Monti P, Pinardi N, Poulain P-M (2012) Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dyn 62(9):1381–1398. doi: 10.1007/s10236-012-0564-2 CrossRefGoogle Scholar
  19. Drevillon M, Greiner E, Paradis D, Payan C, Lellouche J-M, Reffray G, Durand E, Chune SL, Cailleau S (2012) A strategy for producing refined currents in the Equatorial Atlantic in the context of the search of the AF447 wreckage. Ocean Dyn. doi: 10.1007/s10236-012-0580-2 Google Scholar
  20. Frolov S, Paduan J, Cook M, Bellingham J (2012) Improved statistical prediction of surface currents based on historic HF-radarobservations. Ocean Dyn 62(7):1111–1122. doi: 10.1007/s10236-012-0553-5 CrossRefGoogle Scholar
  21. Frost J, Stone L (2001) Review of search theory: advances and applications to search and rescue decision support. Tech. Rep. CG-D-15-01, US Coast Guard research and development center, 1082 Shennecossett Road, Groton, CT, USAGoogle Scholar
  22. Griffa A (1996) Applications of stochastic particle models to oceanographic problems. In: Adler R, Muller P, Rozovskii B (eds) Stochastic modelling in physical oceanography. Birkhauser, Boston, pp 113–128Google Scholar
  23. Hackett B, Breivik Ø, Wettre C (2006) Forecasting the drift of objects and substances in the oceans. In: Chassignet EP, Verron J (eds) Ocean weather forecasting. An integrated view of oceanography. Springer, pp 507–524Google Scholar
  24. Hodgins DO, Hodgins SLM (1998) Phase II Leeway dynamics program: development and verification of a mathematical drift model for liferafts and small boats. Tech. rep. Nova Scotia, CanadaGoogle Scholar
  25. Holthuijsen L (2007) Waves in oceanic and coastal waters. Cambridge University PressGoogle Scholar
  26. Hufford G, Broida S (1976) Estimation of the leeway drift of small craft. Ocean Eng 3(3):123–132. doi: 10.1016/0029-8018(76)90028-7 CrossRefGoogle Scholar
  27. Kohut J, Roarty H, Randall-Goodwin E, Glenn S, Lichtenwalner C (2012) Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight. Ocean Dyn 62:953–968. doi: 10.1007/s10236-012-0533-9 CrossRefGoogle Scholar
  28. Koopman B (1946) Search and screening. Tech. Rep. 56, Office of the Chief of Naval OperationsGoogle Scholar
  29. Koopman B (1956a) The theory of search, part I: kinematic bases. Oper Res 4:324–346CrossRefGoogle Scholar
  30. Koopman B (1956b) The theory of search, part II: target detection. Oper Res 4:503–531CrossRefGoogle Scholar
  31. Koopman B (1957) The theory of search, part III: the optimum distribution of searching effort. Oper Res 5:613–626CrossRefGoogle Scholar
  32. Koopman B (1980) Search and screening: general principles with historical applications. Pergamon, New YorkGoogle Scholar
  33. Kratzke TM, Stone LD, Frost JR (2010) Search and rescue optimal planning system. In: Proceedings of the 13th international conference on information fusion. IEEE, p 8Google Scholar
  34. Kuang L, Blumberg AF, Georgas N (2012) Assessing the fidelity of surface currents from a coastal ocean model and HF radar using drifting buoys in themiddle atlantic bight. Ocean Dyn 62(8):1229–1243CrossRefGoogle Scholar
  35. Lekien F, Coulliette C, Bank R, Marsden J (2004) Open-boundary modal analysis: interpolation, extrapolation, and filtering. J Geophys Res C 109(C12):13. doi: 10.1007/10.1029/2004JC002323 Google Scholar
  36. Maisondieu C, Breivik Ø, Roth J, Allen A, Forest B, Pavec M (2010) Methods for improvement of drift forecast models, In: 29th international conference on ocean, offshore and Arctic engineering, vol 4. ASME, pp 127–133. doi: 10.1115/OMAE2010-20219
  37. McGrayne S (2011) The theory that would not die: how Bayes’ rule cracked the enigma code. Hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University PressGoogle Scholar
  38. Mei CC (1989) The applied dynamics of ocean surface waves, 2nd edn. World Scientific, SingaporeGoogle Scholar
  39. Melsom A, Counillon F, LaCasce J, Bertino L (2012) Forecasting search areas using ensemble ocean circulation modeling. Ocean Dyn 62(8):1245–1257. doi: 10.1007/s10236-012-0561-5 CrossRefGoogle Scholar
  40. Murphy D, Allen A (1985) An evaluation of CASP drift predictions near the New England shelf/slope front. Tech. Rep. CG-D-16-85, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA. Available through
  41. Phillips OM (1977) The dynamics of the upper ocean, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. Pingree F (1944) Forethoughts on rubber rafts. Technical Report Woods Hole Oceanographic InstitutionGoogle Scholar
  43. Richardson HR, Discenza JH (1980) The United States coast guard computer-assisted search planning system (CASP). Nav Res Logist 27:659–680. doi: 10.1002/nav.3800270413 CrossRefGoogle Scholar
  44. Rixen M, Ferreira-Coelho E (2007) Operational surface drift prediction using linear and non-linear hyper-ensemble statistics on atmospheric and ocean models. J Marine Syst 65(1–4):105–121. doi: 10.1016/j.jmarsys.2004.12.005. Marine environmental monitoring and prediction—selected papers from the 36th International Liège Colloquium on Ocean Dynamics, 36th International Liège Colloquium on Ocean DynamicsCrossRefGoogle Scholar
  45. Rixen M, Ferreira-Coelho E, Signell R (2008) Surface drift prediction in the adriatic sea using hyper-ensemble statistics on atmospheric, ocean and wave models: uncertainties and probability distribution areas. J Marine Syst 69(1–2):86–98. doi: 10.1016/j.jmarsys.2007.02.015. Maritime rapid environmental assessment - new trends in operational oceanographyCrossRefGoogle Scholar
  46. Röhrs J, Christensen K, Hole L, Broström G, Drivdal M, Sundby S (2012) Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn. doi: 10.1007/s10236-012-0576-y
  47. Scott R, Ferry N, Drèvillon M, Barron C, Jourdain N, Lellouche J-M, Metzger E, Rio M-H, Smedstad O (2012) Estimates of surface drifter trajectories in the equatorial Atlantic: a multi-model ensemble approach. Ocean Dyn 62(7):1091–1109. doi: 10.1007/s10236-012-0548-2 CrossRefGoogle Scholar
  48. Spaulding M, Isaji T, Hall P, Allen A (2006) A hierarchy of stochastic particle models for search and rescue (SAR): application to predict surface drifter trajectories using HF radar current forcing. J Mar Environ Eng 8(3):181Google Scholar
  49. Stone L (1989) Theory of optimal search, 2nd edn. INFORMSGoogle Scholar
  50. Stone L, Keller C, Kratzke T, Strumpfer J (2011) Search analysis for the underwater wreckage of Air France Flight 447. In: 2011 Proceedings of the 14th international conference on information fusion (FUSION). IEEE, p 8Google Scholar
  51. Stone LD (2013) Search theory. In: Gass S, Fu M (eds) Encyclopedia of operations research and management science. SpringerGoogle Scholar
  52. Suzuki T, Sato H (1977) Measurement of the drifting of a fishing boat or research vessel due to wind and wave. Journal of Japan Institute of Navigation 65(4):1225–1245. doi: 10.1175/2007JAS2427.1 Google Scholar
  53. Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–211CrossRefGoogle Scholar
  54. US Navy Hydrographic Office (1944) Methods for locating survivors adrift at sea on rubber rafts. Technical Report 235, United States Navy Hydrographic OfficeGoogle Scholar
  55. Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book J, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Prog Oceanogr 82(3):149–167. doi: 10.1016/j.pocean.2009.06.002 CrossRefGoogle Scholar
  56. Washburn AR (1980) On search for a moving target. Nav Res Logist Q 27:315–322CrossRefGoogle Scholar
  57. Whelan C, Barrick D, Lilleboe P, Breivik Ø, Kjelaas A, Fernandez V, Alonso-Martirena A (2010) Rapid deployable HF RADAR for Norwegian emergency spill operations In: OCEANS 2010 IEEE-Sydney. IEEE, pp 1–3. doi: 10.1109/OCEANSSYD.2010.5603848

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Øyvind Breivik
    • 1
    Email author
  • Arthur Addoms Allen
    • 2
  • Christophe Maisondieu
    • 3
  • Michel Olagnon
    • 3
  1. 1.ECMWFReadingUK
  2. 2.US Coast Guard, Office of Search and RescueNew LondonUSA
  3. 3.IFREMER, Hydrodynamique et Océano-MétéoPlouzaneFrance

Personalised recommendations