Ocean Dynamics

, Volume 62, Issue 10–12, pp 1545–1563 | Cite as

Impact of tidal mixing with different scales of bottom roughness on the general circulation

  • Eleftheria Exarchou
  • Jin Song von Storch
  • Johann H. Jungclaus
Article
Part of the following topical collections:
  1. Topical Collection on the 4th International Workshop on Modelling the Ocean in Yokohama, Japan 21–24 May 2012

Abstract

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

Keywords

Tidal mixing Overturning circulation Bottom roughness 

Notes

Acknowledgements

We thank Dr. Steven Jayne for providing the data for the medium-scale roughness. We also thank the two anonymous reviewers for their helpful comments. We are grateful to Suvarchal Kumar Cheedela for providing useful comments and ground for fruitful discussion. This work is partly funded by the DFG through the research project Sonderforschungsbereich 512. The model integration was performed on the Linux-cluster of the German Climate Computing Center in Hamburg. This work is supported by the Max Planck Society and the International Max Planck Research School on Earth System Modelling.

References

  1. Bryan F (1987) Parameter sensitivity of primitive equation of ocean general circulation models. J Phys Oceanogr 17:970–985CrossRefGoogle Scholar
  2. Bryan FO, Lewis LJ (1979) A water mass model of the world. J Geophys Res 84:2503–2517CrossRefGoogle Scholar
  3. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 ° N. Science 317:935–938CrossRefGoogle Scholar
  4. Dubois C (2006) The role of diapycnal mixing in coupled atmosphere-ocean general circulation models. Ph.D. thesis. University of Southampton, Faculty of Engineering, Science and Mathematics, School of Ocean and Earth SciencesGoogle Scholar
  5. Egbert GD, Ray RD (2003) Semi-diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30(17):1907CrossRefGoogle Scholar
  6. Friedrich T, Timmermann A, Decloedt T, Luther DS, Mouchet A (2011) The effect of topography-enahnced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry. Ocean Model 39:262–274CrossRefGoogle Scholar
  7. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  8. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  9. Griffies SM, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD et al (1998) Isoneutral diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830CrossRefGoogle Scholar
  10. Hasumi H, Suginohara N (1999) Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J Geophys Res 104:23367–23374CrossRefGoogle Scholar
  11. Huang RX, Jin X (2007) Deep circulation in the South Atlantic induced by bottom-intensified mixing over the Midocean Ridge. J Phys Oceanogr 32:1150–1164CrossRefGoogle Scholar
  12. Jayne SR (2009) The impact of abyssal mixing parameterizations in an ocean general circulation model. J Phys Oceanogr 39:1756–1775CrossRefGoogle Scholar
  13. Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28:811–814CrossRefGoogle Scholar
  14. Kamenkovich IV, Goodman PJ (2000) The dependecne of AABW transport in the Atlantic on vertical diffusivity. Geophys Res Lett 27:3739–3742CrossRefGoogle Scholar
  15. Kuhlbrodt T, Griesel A, Montoya M, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional circulation. Rev Geophys 45:RG2001CrossRefGoogle Scholar
  16. Ledwell JR, Montgomery ET, Polzin KL, St. Laurent LC, Schmitt RW, Toole JM (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182CrossRefGoogle Scholar
  17. Legutke S, Maier-Reimer E (2002) The impact of downslope water-transport parameterization in a global ocean general circulation model. Clim Dynam 18:611–623Google Scholar
  18. Levitus S, Boyer TP, Conkright ME, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) World ocean database 1998. In: Introduction. NOAA Atlas NESDIS 18, vol 1. Ocean Climate Laboratory, National Oceanographic Data Center, U.S. Goverment Printing Office, Washington, DCGoogle Scholar
  19. Marotzke J (1997) Boundary mixing and the dynamics of the three-dimensional thermohaline circulations. J Phys Oceanogr 27:1713–1728CrossRefGoogle Scholar
  20. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  21. Montenegro A, Eby M, Weaver AJ, Jayne, Steven R (2007) Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Model 19:125–137CrossRefGoogle Scholar
  22. Muller CJ, Bühler O (2009) Saturation of the internal tides and induced mixing in the abyssal ocean. J Phys Oceanogr 39:2077–2096CrossRefGoogle Scholar
  23. Munk W, Wunsch C (1998) Abyssal recipies II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010CrossRefGoogle Scholar
  24. Naveira Garabato AC, Polzin KL, King BA, Heywood KJ, Visbeck M (2004) Widespread intense turbulent mixing in the Southern Ocean. Science 303:210–213CrossRefGoogle Scholar
  25. Nikurashin M, Ferrari R (2010a) Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: theory. J Phys Oceanogr 40:1055–1074CrossRefGoogle Scholar
  26. Nikurashin M, Ferrari R (2010b) Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: application to the Southern Ocean. J Phys Oceanogr 40:2025–2042CrossRefGoogle Scholar
  27. Niwa Y, Hibiya T (2011) Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J Oceanogr 67:493–502CrossRefGoogle Scholar
  28. Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451CrossRefGoogle Scholar
  29. Polzin K (2004) Idealized solution for the energy balance of the finescale internal wave field. J Phys Oceanogr 34:231–246CrossRefGoogle Scholar
  30. Polzin K, Toole JM, Ledwell JR, Schmitt (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96CrossRefGoogle Scholar
  31. Polzin KL (2009) An abyssal recipy. Ocean Model 30:298–309CrossRefGoogle Scholar
  32. Polzin KL, Firing E (1997) Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int WOCE Newsl 29:39–42Google Scholar
  33. Röske F (2006) A global heat and freshwater forcing dataset for ocean models. Ocean Model 11:235–297CrossRefGoogle Scholar
  34. Saenko O, Merryfield W (2004) On the effect of the topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr 35:826–834CrossRefGoogle Scholar
  35. Saenko OA (2006) The effect of localized mixing on the ocean circulation and time-dependent climate change. J Phys Oceanogr 36:140–160CrossRefGoogle Scholar
  36. Scott JR, Marotzke J (2002) The location of diapycnal mixing and the meridional overturning circulation. J Phys Oceanogr 32:3578–3595CrossRefGoogle Scholar
  37. Simmons HL, Jayne SR, St. Laurent LC, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263CrossRefGoogle Scholar
  38. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  39. Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 30:3212–3222CrossRefGoogle Scholar
  40. St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23):2106CrossRefGoogle Scholar
  41. St. Laurent LC, Toole JM, Schmitt RW (2001) Buoyancy forcing by turbulence above rough topography in the Abyssal Brazil Basin. J Phys Oceanogr 31:3476–3495CrossRefGoogle Scholar
  42. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Climate 16:3213–3226CrossRefGoogle Scholar
  43. Toole JM, Polzin KL, Schmitt W (1994) Estimates of diapycnal mixing in the Abyssal Ocean. Science 264:1120–1123CrossRefGoogle Scholar
  44. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, and National Geophysical Data Center (2006). 2-Minute Gridded Global Relief Data (ETOPO2v2). http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
  45. Zahel W, Gavinho J, Seiler U (2000) Balances de energia y momento angular de un modelo global de mareas con asimilacion de datos. GEOS 20:400–161Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eleftheria Exarchou
    • 1
  • Jin Song von Storch
    • 1
  • Johann H. Jungclaus
    • 1
  1. 1.Max Plank Institute for MeteorologyHamburgGermany

Personalised recommendations