Ocean Dynamics

, Volume 62, Issue 8, pp 1245–1257 | Cite as

Forecasting search areas using ensemble ocean circulation modeling

  • Arne Melsom
  • François Counillon
  • Joseph Henry LaCasce
  • Laurent Bertino
Part of the following topical collections:
  1. Topical Collection on Advances in Search and Rescue at Sea


We investigate trajectory forecasting as an application of ocean circulation ensemble modeling. The ensemble simulations are performed weekly, starting with assimilation of data for various variables from multiple sensors on a range of observational platforms. The ensemble is constructed from 100 members, and member no. 1 is designed as a standard (deterministic) simulation, providing us with a benchmark for the study. We demonstrate the value of the ensemble approach by validating simulated trajectories using data from ocean surface drifting buoys. We find that the ensemble average trajectories are generally closer to the observed trajectories than the corresponding results from a deterministic forecast. We also investigate an alternative model in which velocity perturbations are added to the deterministic results and ensemble mean results, by a first-order stochastic process. The parameters of the stochastic model are tuned to match the dispersion of the ensemble approach. Search areas from the stochastic model give a higher hit ratio of the observations than the results based on the ensemble. However, we find that this is a consequence of a positive skew of the area distribution of the convex hulls of the ensemble trajectory end points.


Model validation Lagrangian forecasts Ensemble simulations Ocean modeling Search and rescue 



This work has been performed under the MyOcean R&D project Exploring the potential for probabilistic forecasting in MyOcean. We are grateful for the funding from MyOcean/EU Project no. FP7-SPACE-2007-1. Support has also been available from the Norwegian Research Council under contract no. 196685/S40. Computer resources for the ensemble assimilation and model simulations were provided by the NOTUR supercomputing project, which is financed by the Research Council of Norway. Observations of satellite-tracked surface drifting buoys from The Global Drifter Program ( were downloaded from the real-time Coriolis Portal to the Data Buoy Cooperation Panel (DBCP). The analysis was performed using scripts developed for the R programming language ( All figures were made using tools from the NCAR Command Language (NCL, We thank the anonymous reviewers for their constructive comments.


  1. Allen AA, Plourde JV (1999) Review of leeway: field experiments and implementation. USCG R&D center technical report CG-D-08-99Google Scholar
  2. Andersson M, LaCasce JH, Orvik KJ, Koszalka I, Mauritzen C (2011) Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters. J Geophys Res. 116:C08032 (16 pp), doi: 10.1029/2011JC007078
  3. Andrew AT (1979) Another efficient algorithm for convex hulls in two dimensions. Info Proc Lett 9:216–219CrossRefGoogle Scholar
  4. Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) World Ocean Atlas 2005, volume 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS vol. 62. U.S. Government Printing Office, Washington, D.C., 182 ppGoogle Scholar
  5. Berloff PS, McWilliams JC (2002) Material transport in oceanic gyres. Part II: hierarchy of stochastic models. J Phys Oceanogr 32:797–830. doi: 10.1175/1520-0485(2002)032<0797:MTIOGP>2.0.CO;2 CrossRefGoogle Scholar
  6. Bertino L, Lisæter KA (2008) The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J Oper Oceanogr 1(2):15–18Google Scholar
  7. Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4:55–88CrossRefGoogle Scholar
  8. Breivik Ø, Allen AA (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J Mar Syst 69:99–113. doi: 10.1016/j.jmarsys.2007.02.010 CrossRefGoogle Scholar
  9. Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: the leeway field method. Appl Ocean Res 33:100–109. doi: 10.1016/j.apor.2011.01.005 CrossRefGoogle Scholar
  10. Brusdal K, Brankart J, Halberstadt G, Evensen G, Brasseur P, van Leeuwen PJ, Dombrowsky E, Verron J (2003) An evaluation of ensemble based assimilation methods with a layered OGCM. J Mar Syst 40–41:253–289. doi: 10.1016/S0924-7963(03)00021-6 CrossRefGoogle Scholar
  11. Canuto V, Howard A, Cheng Y, Dubovikov M (2002) Ocean turbulence. Part II: vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J Phys Oceanogr 32:240–264. doi: 10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2 CrossRefGoogle Scholar
  12. Chassignet E, Hurlburt HE, Smedstad OM, Halliwell G, Hogan P, Wallcraft A, Bleck R (2006) Ocean prediction with the hybrid coordinate ocean model (HYCOM). Ocean Weather Forecasting, pp 413–426Google Scholar
  13. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162CrossRefGoogle Scholar
  14. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi: 10.1007/s10236-003-0036-9 CrossRefGoogle Scholar
  15. Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimension. Q J R Meteorol Soc 125:723–777CrossRefGoogle Scholar
  16. Griffa A (1996) Applications of stochastic particle models to oceanographic problems. In: Adler R et al (ed) Stochastic modelling in physical oceanography. Birkhäuser Boston, Cambridge, pp 113–140CrossRefGoogle Scholar
  17. Griffa A, Owens K, Piterbarg L, Rozovskii B (1995) Estimates of turbulence parameters from Lagrangian data using a stochastic particle model. J Mar Res 53:371–401CrossRefGoogle Scholar
  18. Hackett B, Ø Breivik C, Wettre C (2006) Forecasting the drift of objects and substances in the oceans. In: Chassignet EP, Verron J (eds) Ocean weather forecasting: an integrated view of oceanography. Springer, Netherlands, pp 507–524CrossRefGoogle Scholar
  19. Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867CrossRefGoogle Scholar
  20. Iskandarani M, Levin J, Choi B, Haidvogel D (2005) Comparison of advection schemes for high-order hp finite element and finite volume methods. Ocean Model 10(1–2):233–252. doi: 10.1016/j.ocemod.2004.09.005 CrossRefGoogle Scholar
  21. Jakobsen PK, Rikergaard MH, Quadfasel D, Schmith T, Hughes CW (2003) The near surface circulation in the Northern North Atlantic as inferred from Lagrangian drifters: variability from the mesoscale to interannual. J Geophys Res 108:3251 (14 pp). doi: 10.1029/2002JC001554 CrossRefGoogle Scholar
  22. Kara AB, Rochford PA, Hurlburt HE (2000) Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J Atmos Ocean Technol 17:1421–1438CrossRefGoogle Scholar
  23. Koszalka I, LaCasce JH, Andersson M, Orvik KJ, Mauritzen C (2011) Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res I 58(4):468–485. doi: 10.1016/j.dsr.2011.01.007 CrossRefGoogle Scholar
  24. Koszalka I, LaCasce JH, Orvik KJ (2009) Relative dispersion in the Nordic Seas. J Mar Res 67:411–433. doi: 10.1357/002224009790741102 CrossRefGoogle Scholar
  25. LaCasce JH (2008) Statistics from Lagrangian observations. Prog Oceanogr 77:1–29CrossRefGoogle Scholar
  26. LaCasce JH (2010) Relative displacement PDFs from balloons and drifters. J Mar Res 68:433–457. doi: 10.1357/002224010794657155 CrossRefGoogle Scholar
  27. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  28. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS vol 61. U.S. Government Printing Office, Washington, D.C., 182 ppGoogle Scholar
  29. Lumpkin R, Pazos M (2007) Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In: Griffa et al (eds) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University Press, Cambridge, pp 39–67Google Scholar
  30. Melsom A (2005) Mesoscale activity in the North Sea as seen in ensemble simulations. Ocean Dyn 55:338–350. doi: 10.1007/s10236-005-0016-3 CrossRefGoogle Scholar
  31. Melsom A (2010) Validation of an ocean model ensemble. In: Dahlin B, Flemming P (eds) Coastal to global operational oceanography: achievements and challenges. EuroGOOS publication no 28. SMHI, Norrköping, pp 253–259Google Scholar
  32. Metzger EJ, Hurlburt HE (2001) The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J Phys Oceanogr 31:1712–1732. doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2 CrossRefGoogle Scholar
  33. Oki T, Sud YC (1998) Design of the global river channel network for Total Runoff Integrating Pathways (TRIP). Earth Interact 2:2–001 (37 pp)CrossRefGoogle Scholar
  34. Orvik KA, Niiler PP (2002) Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas towards Arctic. Geophys Res Lett 29:1896 (4 pp). doi: 10.1029/2002GL015002 CrossRefGoogle Scholar
  35. Özgökmen TM, Griffa A, Piterbarg LI, Mariano AJ (2000) On the predictability of the Lagrangian trajectories in the ocean. J Atmos Ocean Technol 17(3):366–383CrossRefGoogle Scholar
  36. Poulain PM, Warn-Varnas A, Niiler PP (1996) Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters. J Geophys Res 101:18237–18258CrossRefGoogle Scholar
  37. Rényi A, Sulanke R (1963) Über die convexe Hülle von n zufällig gewählten Punkten. Z Wahr 2:75–84CrossRefGoogle Scholar
  38. Rio M-H, Hernandez F (2003) High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J Geophys Res 108:3283 (19 pp) doi: 10.1029/2002JC001655 CrossRefGoogle Scholar
  39. Sakov P, Counillon F, Bertino L, Oke PR, Lisæter KA, Korablev A (2012) The TOPAZ4 pilot reanalysis (2003–2008). Ocean Science (submitted)Google Scholar
  40. Sakov P, Evensen G, Bertino L (2010) Asynchronous data assimilation with the EnKF. Tellus 62A:24–29. doi: 10.1111/j.1600-0870.2009.00417.x Google Scholar
  41. Sakov P, Oke PR (2008) A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus 60A:361–371. doi: 10.1111/j.1600-0870.2007.00299.x Google Scholar
  42. Sawford BL (1993) Recent developments in the Lagrangian stochastic theory of turbulent dispersion. Boundary Layer Meteor 62:197–215CrossRefGoogle Scholar
  43. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  44. Veneziani M, Griffa A, Reynolds AM, Mariano AJ (2004) Oceanic turbulence and stochastic models from subsurface Lagrangian data for the Northwest Atlantic Ocean. J Phys Oceanogr 34:1884–1906. doi: 10.1175/1520-0485(2004)034<1884:OTASMF>2.0.CO;2 CrossRefGoogle Scholar
  45. Zalesak S (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comp Physiol 31:335–362Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Arne Melsom
    • 1
  • François Counillon
    • 2
  • Joseph Henry LaCasce
    • 3
  • Laurent Bertino
    • 4
  1. 1.Norwegian Meteorological InstituteOsloNorway
  2. 2.Mohn Sverdrup CenterNansen Environmental and Remote Sensing CenterBergenNorway
  3. 3.Department of GeosciencesUniversity of OsloOsloNorway
  4. 4.Nansen Environmental and Remote Sensing CenterBergenNorway

Personalised recommendations