Ocean Dynamics

, Volume 62, Issue 6, pp 815–829 | Cite as

Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat

  • Xi Lu
  • Tarmo Soomere
  • Emil V. Stanev
  • Jens Murawski
Article

Abstract

Application of the preventive techniques for the optimisation of fairways in the south-western Baltic Sea and the Kattegat in terms of protection of the coastal regions against current-driven surface transport of adverse impacts released from vessels is considered. The techniques rely on the quantification of the offshore domains (the points of release of adverse impacts) in terms of their ability to serve as a source of remote, current-driven danger to the nearshore. An approximate solution to this inverse problem of current-driven transport is obtained using statistical analysis of a large pool of Lagrangian trajectories of water particles calculated based on velocity fields from the Denmark’s Meteorological Institute (DMI)/BSH cmod circulation model forced by the DMI-HIRHAM wind fields for 1990–1994. The optimum fairways are identified from the spatial distributions of the probability of hitting the coast and for the time (particle age) it takes for the pollution to reach the coast. In general, the northern side of the Darss Sill area and the western domains of the Kattegat are safer to travel. The largest variations in the patterns of safe areas and the properties of pollution beaching occur owing to the interplay of water inflow and outflow. The gain from the use of the optimum fairways is in the range of 10–30 % in terms of the decrease in the probability of coastal hit within 10 days after pollution release or an increase by about 1–2 days of the time it takes for the hit to occur.

Keywords

Particle tracking Baltic Sea fairways Inflow and outflow events 

References

  1. Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16Google Scholar
  2. Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus 56A:548–558Google Scholar
  3. Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J Eng 16:187–210CrossRefGoogle Scholar
  4. Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:309–334CrossRefGoogle Scholar
  5. Ardhuin F, Marie L, Rascle N, Forget P, Roland A (2009) Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838CrossRefGoogle Scholar
  6. Bi NS, Yang ZS, Wang HJ, Hu BQ, Ji YJ (2010) Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuar Coast Shelf Sci 86:352–362CrossRefGoogle Scholar
  7. Blanke B, Raynaud S (1997) Kinematics of the Pacific Equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27:1038–1053CrossRefGoogle Scholar
  8. Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25:58–62CrossRefGoogle Scholar
  9. Bork I, Maier-Reimer E (1978) On the spreading of power plant cooling water in a tidal river applied to the river Elbe. Adv Water Resour 1(3):161–168CrossRefGoogle Scholar
  10. Broström G, Carrasco A, Hole LR, Dick S, Janssen F, Mattsson J, Berger S (2011) Usefulness of high resolution coastal models for operational oil spill forecast: the Full City accident. Ocean Sci 7:805–820CrossRefGoogle Scholar
  11. Buch E, She J (2005) Operational Ocean Forecasting at the Danish Meteorological Institute. Environ Res Eng Manag 3:5–11Google Scholar
  12. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM Regional Climate Model. Version 5. DMI technical report No. 06–17, Available at http://www.dmi.dk/dmi/tr06-17.pdf
  13. De Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Oceanic Technol 18:1092–1101CrossRefGoogle Scholar
  14. Delhez EJM, Campin J, Hirst AC, Deleersnijder E (1999) Toward a general theory of the age in ocean modelling. Ocean Model 1:17–27CrossRefGoogle Scholar
  15. Dick S, Kieline E, Müller-Navarra S (2001) The operational circulation model of BSH (BSHcmod). Model description and validation. Berichte des Bundesatesamtes für Seeschifffahrt und Hydrographie 29/2001. Hamburg, Germany, 48 ppGoogle Scholar
  16. Dippner JW (1983) A hindcast of the Bravo Ekofish blow-out (North Sea). Veroeff Inst Meeresforsch Bremerhaven 19:245–257Google Scholar
  17. Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res C100:13499–13514CrossRefGoogle Scholar
  18. Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:709–721CrossRefGoogle Scholar
  19. Döös K, Nycander J, Coward AC (2008) Lagrangian decomposition of the Deacon Cell. J Geophys Res C 113:07028CrossRefGoogle Scholar
  20. Engqvist A, Döös K, Andrejev O (2006) Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio 35:435–447CrossRefGoogle Scholar
  21. Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36CrossRefGoogle Scholar
  22. Funkquist L (2001) HIROMIB: An operational eddy-resolving model for the Baltic Sea. Bull Maritime Inst Gdansk 28:7–16Google Scholar
  23. Gollasch S, Leppäkoski E (2007) Risk assessment and management scenarios for ballast water mediated species introduction into the Baltic Sea. Aquat Invasions 2:313–340CrossRefGoogle Scholar
  24. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  25. Jönsson B, Lundberg P, Döös K (2004) Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. Ambio 23:257–260Google Scholar
  26. Kachel MJ (2008) Particularly sensitive sea areas. Hamburg studies on maritime affairs, 13. Springer, Berlin, 376 ppGoogle Scholar
  27. Kleine E (1994) Das operationelle Modell des BSH für Nordsee und Ostsee. Bundesamt fur Seeschifffart und Hydrographie. Technical report, 126 ppGoogle Scholar
  28. Kolmogorov AN (1941) The local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Comptes rendus (Doklady) de l’Academie des Sciences de l’URSS 31:301–305Google Scholar
  29. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85CrossRefGoogle Scholar
  30. Lasern J, Høyer JL, She J (2007) Validation of a hybrid optimal interpolation and Kalman filter scheme of sea surface temperature assimilation. J Mar Sys 65:122–133CrossRefGoogle Scholar
  31. Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A:299–316Google Scholar
  32. Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Berlin, 378 ppCrossRefGoogle Scholar
  33. Liu Y, Zhu J, She J, Zhuang S, Fu W, Gao J (2009) Assimilating temperature and salinity profile observations using an anisotropic recursive filter in a coastal ocean model. Ocean Model 30:75–87CrossRefGoogle Scholar
  34. Maier-Reimer E (1973) Hydrodynamical numerical investigation on horizontal dispersion and transport process in the North Sea. Mitteilungen des Institutes für Meereskunde der Universität Hamburg 21, 96 ppGoogle Scholar
  35. Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286CrossRefGoogle Scholar
  36. Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627CrossRefGoogle Scholar
  37. Nunes RA, Simpson JH (1985) Axial convergence in a well-mixed estuary. Estuar Coast Shelf Sci 20:637–649CrossRefGoogle Scholar
  38. Okubo A (1971) Oceanic diffusion diagrams. Deep-Sea Res 18:789–802Google Scholar
  39. Osborne AR, Kirwan AD Jr, Provenzale A, Bergamasco L (1986) A research for chaotic behaviour in large and mesoscale motions in the Pacific Ocean. Physica 23D:75–83Google Scholar
  40. Osborne AR, Kirwan AD, Provenzale A, Bergamasco L (1989) Fractal drifter trajectories in the Kuroshio extension. Tellus 41A:416–435CrossRefGoogle Scholar
  41. Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52:417–429CrossRefGoogle Scholar
  42. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1. Model description. Report no. 349, Max-Planck-Institut für MeteorologieGoogle Scholar
  43. Sanderson BG, Goulding A, Okubo A (1990) The fractal dimension of relative Lagrangian motion. Tellus 42A:550–556Google Scholar
  44. She J, Berg P, Berg J (2007) Bathymetry effects on water exchange modelling the Danish Straits. J Mar Syst 65:450–459CrossRefGoogle Scholar
  45. Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Wea Rev 91:99–164CrossRefGoogle Scholar
  46. Soomere T, Quak E (2007) On the potential of reducing coastal pollution by a proper choice of the fairway. J Coastal Res Special Issue 50:678–682Google Scholar
  47. Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Estonian Acad Sci 59:156–165CrossRefGoogle Scholar
  48. Soomere T, Andrejev O, Sokolov A, Myrberg K (2011a) The use of Lagrangian trajectories for identification the environmentally safe fairway. Mar Pollut Bull 62:1410–1420CrossRefGoogle Scholar
  49. Soomere T, Andrejev O, Sokolov A, Quak E (2011b) Management of coastal pollution by means of smart placement of human activities. J Coast Res Special Issue 64:951–955Google Scholar
  50. Soomere T, Berezovski M, Quak E, Viikmäe B (2011c) Modelling environmentally friendly fairways using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea. Ocean Dyn 61:1669–1680Google Scholar
  51. Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011d) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63Google Scholar
  52. Stommel H (1949) Horizontal diffusion due to oceanic turbulence. J Mar Res 8:199–255Google Scholar
  53. Umlauf L, Burchard H, Hutter K (2003) Extending the k-ω turbulence model towards oceanic applications. Ocean Model 5:195–218CrossRefGoogle Scholar
  54. Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Progr Oceanogr 82:149–167CrossRefGoogle Scholar
  55. Viikmäe B, Soomere T, Viidebaum M, Berezovski A (2010) Temporal scales for transport patterns in the Gulf of Finland. Estonian J Eng 16:211–227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xi Lu
    • 1
  • Tarmo Soomere
    • 2
    • 4
  • Emil V. Stanev
    • 1
  • Jens Murawski
    • 3
  1. 1.Institute for Coastal ResearchHZG GeesthachtGeesthachtGermany
  2. 2.Institute of Cybernetics at Tallinn University of TechnologyTallinnEstonia
  3. 3.Danish Meteorological InstituteCopenhagenDenmark
  4. 4.Estonian Academy of SciencesTallinnEstonia

Personalised recommendations