Advertisement

Ocean Dynamics

, Volume 62, Issue 4, pp 501–514 | Cite as

Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case

  • Ulf GräweEmail author
  • Eric Deleersnijder
  • Syed Hyder Ali Muttaqi Shah
  • Arnold Willem Heemink
Article

Abstract

During the last decades, the Euler scheme was the common “workhorse” in particle tracking, although it is the lowest-order approximation of the underlying stochastic differential equation. To convince the modelling community of the need for better methods, we have constructed a new test case that will show the shortcomings of the Euler scheme. We use an idealised shallow-water diffusivity profile that mimics the presence of a sharp pycnocline and thus a quasi-impermeable barrier to vertical diffusion. In this context, we study the transport of passive particles with or without negative buoyancy. A semi-analytic solutions is used to assess the performance of various numerical particle-tracking schemes (first- and second-order accuracy), to treat the variations in the diffusivity profile properly. We show that the commonly used Euler scheme exhibits a poor performance and that widely used particle-tracking codes shall be updated to either the Milstein scheme or second-order schemes. It is further seen that the order of convergence is not the only relevant factor, the absolute value of the error also is.

Keywords

Particle tracking Milstein scheme Pycnocline Diffusion Residence time 

Notes

Acknowledgements

Eric Deleersnijder was a research associate with the Belgian Fund for Scientific Research (F.R.S.-FNRS). His contribution to the present study was achieved in the framework of the Interuniversity Attraction Pole TIMOTHY, which is funded by BELSPO under the contract IAP6.13, and the ARC 10/15-028 (Communauté Française de Belgique). Ulf Gräwe was funded by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie of Germany (BMBF) through grant number 01LR0807B.

References

  1. Arnold L (1974) Stochastic differential equations: theory and applications. Wiley, LondonGoogle Scholar
  2. Beron-Vera FJ, Olascoaga MJ (2009) An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida Shelf. J Phys Oceanogr 39(7):1743–1755CrossRefGoogle Scholar
  3. Blanke B, Raynaud S (1997) Kinematics of the Pacific equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27(6):1038–1053CrossRefGoogle Scholar
  4. Blumberg A, Dunning D, Li H, Heimbuch D, Rockwell Geyer W (2004) Use of a particle-tracking model for predicting entrainment at power plants on the Hudson River. Estuar Coast 27:515–526Google Scholar
  5. Brickman D, Smith PC (2001) Lagrangian stochastic modeling in coastal oceanography. J Atmos Ocean Technol 19(1):83–99CrossRefGoogle Scholar
  6. Brochier T, Lett C, Tam J, Fréon P, Colas F, Ayón P (2008) An individual-based model study of anchovy early life history in the northern Humboldt Current system. Prog Oceanogr 79(2-4):313–325CrossRefGoogle Scholar
  7. Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311CrossRefGoogle Scholar
  8. Callies U, Plüß A, Kappenberg J, Kapitza H (2011) Particle tracking in the vicinity of Helgoland, North Sea: a model comparison. Ocean Dyn 1–19Google Scholar
  9. Christensen A, Daewel U, Jensen H, Mosegaard H, St John M, Schrum C (2007) Hydrodynamic backtracking of fish larvae by individual-based modelling. Mar Ecol Prog Ser 347:221–232CrossRefGoogle Scholar
  10. de Brauwere A, Deleersnijder E (2010) Assessing the parameterisation of the settling flux in a depth-integrated model of the fate of decaying and sinking particles, with application to fecal bacteria in the Scheldt Estuary. Environ Fluid Mech 10:157–175CrossRefGoogle Scholar
  11. Deleersnijder E, Beckers JM, Delhez EJM (2006a) On the behaviour of the residence time at bottom of the mixed layer. Environ Fluid Mech 6:541–547CrossRefGoogle Scholar
  12. Deleersnijder E, Beckers JM, Delhez EJM (2006b) The residence time of settling in the surface mixed layer. Environ Fluid Mech 6:25–42CrossRefGoogle Scholar
  13. D’Ovidio F, Fernández V, Hernández-García E, López C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31:L17203CrossRefGoogle Scholar
  14. Elliott AJ, Dale AC, Proctor R (1992) Modelling the movement of pollutants in the UK shelf seas. Mar Pollut Bull 24(12):614–619CrossRefGoogle Scholar
  15. Gräwe U (2011) Implementation of high-order particle-tracking schemes in a water column model. Ocean Model 36(1–2):80–89CrossRefGoogle Scholar
  16. Gräwe U, Wolff JO (2010) Suspended particulate matter dynamics in a particle framework. Environ Fluid Mech 10(1):21–39CrossRefGoogle Scholar
  17. Huret M, Runge JA, Chen C, Cowles G, Xu Q, Pringle JM (2007) Dispersal modeling of fish early life stages: sensitivity with application to Atlantic cod in the western Gulf of Maine. Mar Ecol Prog Ser 347:261–274CrossRefGoogle Scholar
  18. Iskandarani M, Levin J, Choi BJ, Haidvogel DB (2005) Comparison of advection schemes for high-order h-p finite element and finite volume methods. Ocean Model 10(1–2):233–252CrossRefGoogle Scholar
  19. Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations (stochastic modelling and applied probability), 3rd edn. Springer, BerlinGoogle Scholar
  20. Krestenitis YN, Kombiadou KD, Savvidis YG (2007) Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf. Ocean Sci 3(1):91–104CrossRefGoogle Scholar
  21. LaBolle EM, Quastel J, Fogg GE, Gravner J (2000) Diffusion processes in composite porous media and their numerical integration by random walks: generalized stochastic differential equations with discontinuous coefficients. Water Resour Res 36(3):651–662CrossRefGoogle Scholar
  22. Lalescu C, Teaca B, Carati D (2010) Implementation of high order spline interpolations for tracking test particles in discretized fields. J Comput Phys 229(17):5862–5869CrossRefGoogle Scholar
  23. Lane A, Prandle D (2006) Random-walk particle modelling for estimating bathymetric evolution of an estuary. Estuar Coast Shelf Sci 68(1-2):175–187CrossRefGoogle Scholar
  24. Mariano A, Kourafalou V, Srinivasan A, Kang H, Halliwell G, Ryan E, Roffer M (2011) On the modeling of the 2010 Gulf of Mexico oil spill. Dyn Atmos Ocean 52(1-2):322–340CrossRefGoogle Scholar
  25. Marsaglia G (2003) Xorshift RNGs. J Stat Software 8(14):1–6Google Scholar
  26. Marsaglia G, Tsang WW (2000) The ziggurat method for generating random variables. J Stat Software 5(8):1–7Google Scholar
  27. Maruyama G (1955) Continuous Markov processes and stochastic equations. Rend Circ Mat Palermo 4:48–90CrossRefGoogle Scholar
  28. Milstein GN (1974) Approximate integration of stochastic differential equations. Theory Probab Appl 19:557–562Google Scholar
  29. Milstein GN (1979) A method of second-order accuracy integration of stochastic differential equations. Theory Probab Appl 23(2):396–401CrossRefGoogle Scholar
  30. North E, Hood R, Chao SY, Sanford L (2006) Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: a new implementation scheme and model performance tests. J Mar Syst 60(3-4):365–380CrossRefGoogle Scholar
  31. Ohlmann JC, Mitarai S (2010) Lagrangian assessment of simulated surface current dispersion in the coastal ocean. Geophys Res Lett 37:L17602CrossRefGoogle Scholar
  32. Penland C (2003) A stochastic approach to nonlinear dynamics: a review. Bull Am Meteorol Soc 84(7):43–52Google Scholar
  33. Pietrzak J (1998) The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon Weather Rev 126:812–830CrossRefGoogle Scholar
  34. Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res 91:197–221CrossRefGoogle Scholar
  35. Proehl JA, Lynch DR, McGillicuddy DJ, Ledwell JR (2005) Modeling turbulent dispersion on the North Flank of Georges Bank using Lagrangian particle methods. Cont Shelf Res 25(7–8):875–900CrossRefGoogle Scholar
  36. Shah SHAM, Heemink AW, Deleersnijder E (2011) Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces. Ocean Model 39(3–4):351–361CrossRefGoogle Scholar
  37. Silverman BW (1986) Density estimation for statistics and data analysis (Chapman & Hall/CRC monographs on statistics & applied probability), 1st edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  38. Soomere T, Andrejev O, Myrberg K, Sokolov A (2011) The use of Lagrangian trajectories for the identification of the environmentally safe fairways. Mar Pollut Bull 62(7):1410–1420CrossRefGoogle Scholar
  39. Spivakovskaya D, Heemink A, Deleersnijder E (2007a) Lagrangian modelling of multi-dimensional advection–diffusion with space-varying diffusivities: theory and idealized test cases. Ocean Dyn 57(3):189–203CrossRefGoogle Scholar
  40. Spivakovskaya D, Heemink AW, Deleersnijder E (2007b) The backward Îto method for the Lagrangian simulation of transport processes with large space variations of the diffusivity. Ocean Sci 3(4):525–535CrossRefGoogle Scholar
  41. Stijnen JW, Heemink A, Lin HX (2006) An efficient 3D particle transport model for use in stratified flow. Int J Numer Methods Fluids 51(3):331–350CrossRefGoogle Scholar
  42. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556CrossRefGoogle Scholar
  43. van der Lee EM, Umlauf L (2011) Internal-wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J Geophys Res 116(C10016)Google Scholar
  44. Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158:275–281CrossRefGoogle Scholar
  45. Vitousek S, Fringer OB (2011) Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Model 40(1):72–86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ulf Gräwe
    • 1
    Email author
  • Eric Deleersnijder
    • 2
    • 3
  • Syed Hyder Ali Muttaqi Shah
    • 4
  • Arnold Willem Heemink
    • 4
  1. 1.Leibniz Institute for Baltic Sea Research (IOW)WarnemündeGermany
  2. 2.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Earth and Life Institute (ELI), G. Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Delft Institute of Applied Mathematics (DIAM)Delft University of TechnologyDelftthe Netherlands

Personalised recommendations