Ocean Dynamics

, Volume 62, Issue 5, pp 753–769 | Cite as

M2 tidal dynamics in Bohai and Yellow Seas: a hybrid data assimilative modeling study

  • Zhigang Yao
  • Ruoying He
  • Xianwen Bao
  • Dexing Wu
  • Jun Song
Part of the following topical collections:
  1. Topical Collection on the 3rd International Workshop on Modelling the Ocean 2011


A high-resolution hybrid data assimilative (DA) modeling system is adapted to study the M2 barotropic tidal characteristics and dynamics in the Bohai and Yellow Seas. In situ data include tidal harmonics extracted from both coastal sea level and bottom pressure observations. The hybrid DA system consists of both forward and inverse models. The former is three-dimensional, finite-difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional, linearized, frequency-domain, finite-element model TRUXTON. The DA system assimilates in situ observations via the inversion of the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improves ROMS tidal solutions. Up to 50% reduction of model/data misfits is achieved after data assimilation. M2 co-tidal maps constructed from the posterior (data assimilative) ROMS solutions agree well with observational analysis of (Fang et al. 2004). Detailed analyses on tidal mixing, residual current, energy flux, dissipation, and momentum term balance dynamics are performed for M2 constituent, revealing complex M2 tidal characteristics in the study region and the important role of coastal geometry and topography in affecting regional tidal dynamics.


Tidal inversion Boundary conditions Hybrid data assimilation Refining 


  1. An HS (1977) A numerical experiment of the M2 tide in the Yellow Sea. J Oceanogr 33(2):103–110Google Scholar
  2. Aretxabaleta A et al (2005) Data assimilative hindcast on the Southern Flank of Georges Bank during May 1999: frontal circulation and implications. Cont Shelf Res 25(7–8):849–874CrossRefGoogle Scholar
  3. Bao X et al (2001) Three dimensional simulation of tide and tidal current characteristics in the East China Sea. Oceanol Acta 24(2):135–149CrossRefGoogle Scholar
  4. Choi BH (1980) A tidal model of the Yellow Sea and the Eastern China Sea. Korea Ocean Research and Development Institute, SeoulGoogle Scholar
  5. Choi BH et al (2003) A synchronously coupled tide-wave-surge model of the Yellow Sea. Coast Eng 47(4):381–398CrossRefGoogle Scholar
  6. Davies AM et al (1998) A three-dimensional model of wind-driven circulation on the shelf application to the storm of January 1993. Cont Shelf Res 18(2–4):289–340CrossRefGoogle Scholar
  7. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204CrossRefGoogle Scholar
  8. Egbert GD et al (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852CrossRefGoogle Scholar
  9. Fang G (1986) Tide and tidal current charts for the marginal seas adjacent to China. In: Zhou D (ed) Oceanology of China Seas. Kluwer Academic Publishers, Dordrecht, pp 101–112Google Scholar
  10. Fang G (1994) Tides and tidal currents in East China Sea, Huanghai Sea and Bohai Sea. Oceanology of China seas 101–112Google Scholar
  11. Fang G, Yang J (1985) A two-dimensional numerical model of the tidal motions in the Bohai Sea. Chin J Oceanol Limnol 3(2):135–152CrossRefGoogle Scholar
  12. Fang G et al (2004) Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. J Geophys Res Oceans 109(C11):C11006CrossRefGoogle Scholar
  13. Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liege 10(6):141–164Google Scholar
  14. Foreman (1979) Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Patricia BayGoogle Scholar
  15. Greenberg DA (1979) A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Mar Geodesy 2(2):161–187CrossRefGoogle Scholar
  16. Han G et al (2001) Optimizing open boundary conditions of nonlinear tidal model using adjoint method, ii: Assimilation experiment for tide in the Yellow Sea and East China Sea. Acta Oceanol Sin 23(2):25–31Google Scholar
  17. Hao W et al (2003) Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the Yellow Sea. Fish Oceanogr 12(45):434–442CrossRefGoogle Scholar
  18. He R, Wilkin JL (2006) Barotropic tides on the southeast New England shelf: a view from a hybrid data assimilative modeling approach. J Geophys Res 111(C08002)Google Scholar
  19. He R, McGillicuddy DJ, Smith KW, Lynch DR, Stock CA, Manning JP (2005) Data assimilative hindcast of the Gulf of Maine coastal circulation. J Geophys Res 110(C10):C10011. doi: 10.1029/2004JC002807 CrossRefGoogle Scholar
  20. Hickox R et al (2000) Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai Seas from satellite SST data. Geophys Res Lett 27(18):2945–2948CrossRefGoogle Scholar
  21. Huang D et al (1999) Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea. Cont Shelf Res 19(11):1485–1505CrossRefGoogle Scholar
  22. Hyun JH et al (1999) Tidally induced changes in bacterial growth and viability in the macrotidal Han River estuary, Yellow Sea. Estuar Coast Shelf Sci 48(2):143–153CrossRefGoogle Scholar
  23. Kang SK et al (1998) Fine grid tidal modeling of the Yellow and East China Seas. Cont Shelf Res 18(7):739–772CrossRefGoogle Scholar
  24. Kang SK et al (2002) Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. J Geophys Res 107(C3):3020CrossRefGoogle Scholar
  25. Kantha LH et al (1995) Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides: 2. Altimetric and geophysical implications. J Geophys Res 100(25):309–325Google Scholar
  26. Larsen LH et al (1985) East China Sea tide currents. Cont Shelf Res 4(1–2):77–103CrossRefGoogle Scholar
  27. Lee SH, Beardsley RC (1999) Influence of stratification on residual tidal currents in the Yellow Sea. J Geophys Res-Oceans 104(C7), 15, 615-679, 701Google Scholar
  28. Lee JC, Jung KT (1999) Application of eddy viscosity closure models for the M2 tide and tidal currents in the Yellow Sea and the East China Sea. Cont Shelf Res 19(4):445–475CrossRefGoogle Scholar
  29. Lefevre F et al (2000) How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J Geophys Res 105(C4):8707–8725CrossRefGoogle Scholar
  30. Lie HJ (1989) Tidal fronts in the southeastern Hwanghae (Yellow Sea). Cont Shelf Res 9(6):527–546CrossRefGoogle Scholar
  31. Lie HJ et al (2002) Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas. J Geophys Res Oceans 107(C1):3003CrossRefGoogle Scholar
  32. Lu XQ, Fang GH (2002) Inversion of the Tides on the Open Boundary of the BOHAI SEA by Adjoint Method. Oceanol ET Limnol Sin 33(2):113–120Google Scholar
  33. Lu X et al (2009) Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Cont Shelf ResGoogle Scholar
  34. Lynch DR, Naimie CE (1993) The M2 Tide and Its Residual on the Outer Banks of the Gulf of Maine. J Phys Oceanogr 23(10):2222–2253CrossRefGoogle Scholar
  35. Lynch DR et al (1998) Hindcasting the Georges Bank circulation. part I:: detiding. Cont Shelf Res 18(6):607–639CrossRefGoogle Scholar
  36. Lynch D et al (2004) Forecasting the coastal ocean: Resolution, tide, and operational data in the South Atlantic Bight. J Atmos Ocean Technol 21(7):1074–1085CrossRefGoogle Scholar
  37. Marchesiello P et al (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20CrossRefGoogle Scholar
  38. McIntosh PC, Bennett AF (1984) Open ocean modeling as an inverse problem: M2 tides in Bass Strait. J Phys Oceanogr 14(3):601–614CrossRefGoogle Scholar
  39. Munk W (1997) Once again: once again—tidal friction. Prog Oceanogr 40(1–4):7–35CrossRefGoogle Scholar
  40. Naimie CE, Lynch DR (2001) Inversion skill for limited-area shelf modeling. Part I: An OSSE case study. Cont Shelf Res 21(11–12):1121–1137CrossRefGoogle Scholar
  41. Naimie CE et al (2001) Seasonal Mean Circulation in the Yellow Sea - A Model-Generated Climatology. Cont Shelf Res 21(6–7):667–695CrossRefGoogle Scholar
  42. Ogura S (1933) The tides in the seas adjacent to Japan, Hydrographic DeptGoogle Scholar
  43. Pawlowicz R et al (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci UK 28(8):929–937CrossRefGoogle Scholar
  44. Prandle D (1982) The vertical structure of tidal currents. Geophys Astrophys Fluid Dyn 22(1–2):29–49CrossRefGoogle Scholar
  45. Provost CL, Lyard F (1997) Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Prog Oceanogr 40(1–4):37–52CrossRefGoogle Scholar
  46. Shum CK et al (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11), 25, 125-173, 194Google Scholar
  47. Sikiric MD et al (2009) A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Model 29(2):128–136CrossRefGoogle Scholar
  48. Simpson JH, Hunter JR (1974) Fronts in the Irish Sea. Nature 250:404–406CrossRefGoogle Scholar
  49. Taylor GI (1919) Tidal friction in the Irish Sea. Proc R Soc London Ser A 96(678):330CrossRefGoogle Scholar
  50. Teague WJ et al (1998) Current and tide observations in the southern Yellow Sea. J Geophys Res-Oceans 103(C12), 27, 727-783, 793Google Scholar
  51. Thomson RE, Emery WJ (2001) Data analysis methods in physical oceanography, 2nd and rev. ed. ed., 638pp., Elsevier, AmsterdamGoogle Scholar
  52. Wang Y et al (2004) Tides of the Bohai, Yellow and East China Seas by assimilating gauging station data into a hydrodynamic model, in Advances in marine science, edited, pp. 253-274.Google Scholar
  53. Xia C et al (2006) Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J Geophys Res Oceans 111(C11):C11S–C13SCrossRefGoogle Scholar
  54. Zhao B et al (1993) Numerical modeling on the tides and tidal currents in the Eastern China Sea, editedGoogle Scholar
  55. Zimmerman J (1978) Topographic generation of residual circulation by oscillatory (tidal) currents. Geophys Astrophys Fluid Dyn 11(1):35–47CrossRefGoogle Scholar
  56. Zu T et al (2008) Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Res Part I: Oceanogr Res Pap 55(2):137–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zhigang Yao
    • 1
    • 2
    • 3
  • Ruoying He
    • 2
  • Xianwen Bao
    • 1
    • 3
  • Dexing Wu
    • 1
  • Jun Song
    • 3
    • 4
  1. 1.College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  2. 2.Department of Marine, Earth and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  3. 3.Key Laboratory of Physical OceanographyOcean University of ChinaQingdaoChina
  4. 4.National Marine Data and Information ServiceState Oceanic AdministrationTianjinChina

Personalised recommendations