Ocean Dynamics

, Volume 62, Issue 3, pp 335–354 | Cite as

The origin and fate of mode water in the southern Pacific Ocean

  • Audrey Hasson
  • Ariane Koch-Larrouy
  • Rosemary Morrow
  • Mélanie Juza
  • Thierry Penduff
Article

Abstract

Understanding the origin and fate of mode and intermediate waters (MW) in the subtropical Pacific Ocean is critical for climate, as MW store and export a large volume of CO2, heat, nutrients and salinity to lower latitudes at depths isolated from the atmosphere. A realistic 4D simulation has been used to track and quantify the MW routes and their property characteristics at the last region of subduction. It also allows us to quantify the water transformation after subduction. The simulation has been compared to available observations using a collocation method that interpolated model data onto observations in time and space. The comprehensive comparisons gave us confidence in the model’s capacity to reproduce MW characteristics. A quantitative Lagrangian analysis was performed on the model output to depict the origin, the fate and the route of MW circulating in the southern Pacific Ocean, selected in the density range of 26.8–27.4 kg m−3. We found 18 Sv of MW were transported northward in patches through the 42° S section, mostly between 200 and 800 m depth. Of this transport, 8 Sv enters the Pacific Ocean in the upper layer south of Tasmania and subducts in the Pacific. The remainder is not ventilated in the Pacific sector: 4 Sv is advected from the Indian Ocean south of Tasmania at intermediate depth and finally 6 Sv is part of an intermediate depth recirculation within the Pacific Ocean. Particles take up to 30 years to travel northward through our domain before crossing the 42° S section. Southward transport branches also exist: 3 Sv flows southward following the eastern New Zealand coast and then exits through Drake Passage. An additional 4 Sv passes southward in the Tasman Sea, following the eastern Tasmanian coast and enters the Indian Ocean south of Tasmania, as part of the Tasman Leakage. Four different formation sites have been identified, where the MW are last ventilated. These formation sites have different water masses with specific salinity ranges. A study on the evolution of the physical characteristics of each of these water masses has been performed. All MW characteristics become more homogeneous at 42° S than they were when they left the mixed layer. This study confirms the homogenisation of mode waters at intermediate depth in the Pacific Ocean as previously revealed in the Indian Ocean using the same methodology. Transformations are shown to be mostly isopycnal in the Tasman Sea and diapycnal farther east.

Keywords

Subantarctic mode water Antarctic intermediate water Southern Ocean South Pacific Ocean Water mass transformations Water mass pathways Lagrangian 

Notes

Acknowledgments

This work was done as part of Hasson’s Master’s degree at Université Paul Sabatier (Toulouse II), École Nationale de la Météorologie and LEGOS. The project was supported by the CNES via the French TOSCA programme. The model dataset was provided by the DRAKKAR Group. The authors would like to thank the two anonymous reviewers whose constructive comments brought more clarity to our interpretations.

References

  1. Aoki S, Hariyama M, Mitsudera H, Sasaki H, Sasai Y (2007) Formation regions of subantarctic mode water detected by ofes and Argo profiling floats. Geophys Res Lett 34:10CrossRefGoogle Scholar
  2. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Boning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567CrossRefGoogle Scholar
  3. Blanke B, Delecluse P (1993) Variability of the tropical atlantic-ocean simulated by a general-circulation model with 2 different mixed-layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  4. Blanke B, Raynaud S (1997) Kinematics of the pacific equatorial undercurrent: an eulerian and lagrangian approach from gcm results. J Phys Oceanogr 27:1038–1053CrossRefGoogle Scholar
  5. Blanke B, Arhan M, Madec G, Roche S (1999) Warm water paths in the equatorial atlantic as diagnosed with a general circulation model. J Phys Oceanogr 29:2753–2768CrossRefGoogle Scholar
  6. Blanke B, Arhan M, Speich S, Pailler K (2002) Diagnosing and picturing the north atlantic segment of the global conveyor belt by means of an ocean general circulation model. J Phys Oceanogr 32:1430–1451CrossRefGoogle Scholar
  7. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104CrossRefGoogle Scholar
  8. Deacon GER (1937) The hydrology of the Southern Ocean. Discov Rep 15(Issue 4.6):1–124Google Scholar
  9. Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res Oceans 113:12Google Scholar
  10. DRAKKAR_Group, Barnier B, Brodeau L, Le Sommer J, Molines J-M, Penduff T, Theetten S, Treguier A-M, Madec G, Biastoch A, Böning C, Dengg J, Gulev S, Badie R, Chanut J, Garric G, Alderson S, Coward A, de Cuevas B, New A, Haines K, Smith G, Drijfhout S, Hazeleger W, Severijns C, Myers P (2007) Eddy-admitting ocean circulation hindcasts of past decades. Clivar Exch 12(No 3):8–10, No. 42Google Scholar
  11. England MH, Godfrey JS, Hirst AC, Tomczak M (1993) The mechanism for Antarctic intermediate water renewal in a world ocean model. J Phys Oceanogr 23:1553–1560CrossRefGoogle Scholar
  12. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807Google Scholar
  13. Hanawa K, Talley LD (2001) Chap 5.4: mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, New York, pp 373–386CrossRefGoogle Scholar
  14. Herraiz-Borreguero L, Rintoul SR (2011) Subantarctic mode water: distribution and circulation. Ocean Dyn 61:103–126CrossRefGoogle Scholar
  15. Iudicone D, Rodgers KB, Schopp R, Madec G (2007) An exchange window for the injection of antarctic intermediate water into the south pacific. J Phys Oceanogr 37:31–49CrossRefGoogle Scholar
  16. Karstensen J, Quadfasel D (2002) Formation of southern hemisphere thermocline waters: water mass conversion and subduction. J Phys Oceanogr 32:3020–3038CrossRefGoogle Scholar
  17. Klocker A, McDougall T J (2010) Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J Phys Oceanogr 40:1690–1709Google Scholar
  18. Koch-Larrouy A, Morrow R, Penduff T, Juza M (2010) Origin and mechanism of subantarctic mode water formation and transformation in the southern Indian ocean. Ocean Dyn SI 60:563–583CrossRefGoogle Scholar
  19. Lachkar Z, Orr JC, Dutay JC, Delecluse P (2009) On the role of mesoscale eddies in the ventilation of antarctic intermediate water. Deep-Sea Res Part I Oceanogr Res Pap 56:909–925CrossRefGoogle Scholar
  20. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical report TN-460+STR (vol.105)Google Scholar
  21. Lecointre A (2009) Variabilite interannuelle a decenale en atlantique nord et mers nordiques: Etudes conjointe d’observations, simulations numeriques et reanalyses. PhD thesis, Universite Joseph Fourier—Grenoble 1Google Scholar
  22. Levitus S, Boyer TP, Conkright ME, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) Introduction, NOAA Atlas, NESDIS 18. World Ocean Data Base, Washington, D.CGoogle Scholar
  23. Madec G (2008) Nemo ocean engine, Note du pole de Modelisation, Institut Pierre-Simon Laplace (IPSL), France, (vol.27, 300 pp)Google Scholar
  24. McCartney MS (1977) A voyage of discovery (Supplement to Deep-Sea Research, George Beacon 70th Anniversary Volume. ed). Pergamon, Oxford, pp 103–119Google Scholar
  25. Montegut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12):148–227Google Scholar
  26. Penduff T, Juza M, Barnier B (2007a) Assessing the realism of ocean simulations against hydrography and altimetry. Clivar Exch 12(3):11–12, No 42Google Scholar
  27. Penduff T, Le Sommer J, Barnier B, Treguier AM, Molines JM, Madec G (2007b) Influence of numerical schemes on current–topography interactions in 1/4° global ocean simulations. Ocean Sci 3:509–524CrossRefGoogle Scholar
  28. Penduff T, Juza M, Brodeau L, Smith GC, Barnier B, Molines JM, Treguier AM, Madec G (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6:269–284CrossRefGoogle Scholar
  29. Piola AR, Georgi DT (1982) Circumpolar properties of antarctic intermediate water and sub-antarctic mode water. Deep-Sea Res Part a-Oceanogr Res Pap 29:687–711CrossRefGoogle Scholar
  30. Qu TD, Gao S, Fukumori I, Fine RA, Lindstrom EJ (2008) Subduction of south pacific waters. Geophys Res Lett 35:L02610CrossRefGoogle Scholar
  31. Reid JL (1997) On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog Oceanogr 39:263–352CrossRefGoogle Scholar
  32. Rintoul SR, England MH (2002) Ekman transport dominates local air–sea fluxes in driving variability of subantarctic mode water. J Phys Oceanogr 32:1308–1321CrossRefGoogle Scholar
  33. Sallée JB, Wienders N, Speer K, Morrow R (2006) Formation of subantarctic mode water in the southeastern indian ocean. Ocean Dyn 56:525–542CrossRefGoogle Scholar
  34. Sallée JB, Morrow R, Speer K (2008) Eddy heat diffusion and subantarctic mode water formation. Geophys Res Lett 35:7CrossRefGoogle Scholar
  35. Sallée JB, Speer K, Rintoul S, Wijffels S (2010) Southern Ocean thermocline ventilation. J Phys Oceanogr 40:509–529CrossRefGoogle Scholar
  36. Santoso A, England MH (2004) Antarctic intermediate water circulation and variability in a coupled climate model. J Phys Oceanogr 34:2160–2179CrossRefGoogle Scholar
  37. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60CrossRefGoogle Scholar
  38. Schneider W, Fukasawa M, Uchida H, Kawano T, Kaneko I, Fuenzalida R (2005) Observed property changes in eastern south pacific antarctic intermediate water. Geophys Res Lett 32:L14602CrossRefGoogle Scholar
  39. Sloyan BM, Rintoul SR (2001) Circulation, renewal, and modification of antarctic mode and intermediate water. J Phys Oceanogr 31:1005–1030CrossRefGoogle Scholar
  40. Speer KG (1997) A note on average cross-isopycnal mixing in the north atlantic ocean. Deep-Sea Res Part I-Oceanogr Res Pap 44:1981–1990CrossRefGoogle Scholar
  41. Speich S, Blanke B, de Vries P, Drijfhout S, Döös K, Ganachaud A, Marsh R (2002) Tasman leakage: a new route in the global ocean conveyor belt. Geophys Res Lett 29(10):L1416CrossRefGoogle Scholar
  42. Steele M, Morley R, Ermold W (2001) PHC: a global hydrography with a high quality Arctic Ocean. J Climate 14:2079–2087CrossRefGoogle Scholar
  43. Talley LD (1999) Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In: WaK C (ed) Mechanisms of global climate change at millennial time scales, vol 112. American Geophysical Union, Washington, DC, pp 1–22CrossRefGoogle Scholar
  44. Williams RG, Spall MA, Marshall JC (1995) Does stommel’s mixed layer “demon” work? J Phys Oceanogr 25:3089–3102CrossRefGoogle Scholar
  45. Wong APS (2005) Subantarctic mode water and antarctic intermediate water in the south indian ocean based on profiling float data 2000–2004. J Mar Res 63:789–812CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Audrey Hasson
    • 1
  • Ariane Koch-Larrouy
    • 1
  • Rosemary Morrow
    • 1
  • Mélanie Juza
    • 2
  • Thierry Penduff
    • 2
    • 3
  1. 1.Laboratoire des Etudes Géophysiques et Océanographiques SpatialesToulouse cedex 09France
  2. 2.Laboratoire Ecoulements Géophysiques et IndustrielsGrenoble cedex 09France
  3. 3.Earth, Ocean and Atmospheric Science DepartmentThe Florida State UniversityTallahasseeUSA

Personalised recommendations