Ocean Dynamics

, Volume 62, Issue 2, pp 177–191 | Cite as

Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence

  • Iossif Lozovatsky
  • Zhiyu Liu
  • Harindra Fernando
  • Jordi Armengol
  • Elena Roget


Velocity measurements with vertical resolution 0.02 m were conducted in the lowest 0.5 m of the water column using acoustic Doppler current profiler (ADCP) at a test site in the western part of the East China Sea. The friction velocity u * and the turbulent kinetic energy dissipation rate ε wl(ζ) profiles were calculated using log-layer fits; ζ is the height above the bottom. During a semidiurnal tidal cycle, u * was found to vary in the range (1–7) × 10−3 m/s. The law-of-the-wall dissipation profiles ε wl(ζ) were consistent with the dissipation profiles ε mc(ζ) evaluated using independent microstructure measurements of small-scale shear, except in the presence of westward currents. It was hypothesized that an isolated bathymetric rise (25 m height at a 50-m seafloor) located to the east of the measurement site is responsible for the latter. Calculation of the depth integrated internal tide generating body force in the region showed that the flanks of the rise are hotspots of internal wave energy that may locally produce a significant turbulent zone while emitting tidal and shorter nonlinear internal waves. This distant topographic source of turbulence may enhance the microstructure-based dissipation levels ε mc(ζ) in the bottom boundary layer (BBL) beyond the dissipation ε wl(ζ) associated with purely locally generated turbulence by skin currents. Semi-empirical estimates for dissipation at a distance from the bathymetric rise agree well with the BBL values of ε mc measured 15 km upslope.


Tidal current Bottom boundary layer Friction velocity Turbulent kinetic energy dissipation rate Logarithmic layer Law of the wall Boundary-induced turbulence 



The authors are grateful to scientists and students at Ocean University of China led by Prof. Hao Wei for arranging logistics of data collection. The effort was supported by the Major State Program of China for Basic Research (grant 2006CB400602). The analysis presented in this paper was supported by the US Office of Naval Research (grant N00014-05-1-0245), the National Natural Science Foundation of China (Z. Liu, grants 41006017 and 41076001), the Fundamental Research Funds for the Central Universities (Z. Liu, grant 2010121031), Arizona State University (J. Armengol as a visiting researcher), and by the Spanish Ministry of Education and Science (E. Roget, grant FIS2008-03608).


  1. Azevedo A, da Silva JCB, New AL (2006) On the generation and propagation of internal solitary waves in the southern Bay of Biscay. Deep-Sea Res I 53:927–941CrossRefGoogle Scholar
  2. Baines PG (1982) On internal tide generation models. Deep-Sea Res A 29:307–338CrossRefGoogle Scholar
  3. Bowden KF (1978) Physical problems of the benthic boundary layer. Geophys Surveys 3:255–296CrossRefGoogle Scholar
  4. Brighton PWM (1978) Strong stratified flow past three-dimensional obstacles. Q J Roy Meteorol Soc 104:289–307CrossRefGoogle Scholar
  5. Cheng RT, Ling CH, Gartner JW (1999) Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. J Geophys Res 104:7715–7728CrossRefGoogle Scholar
  6. da Silva JCB, New AL, Magalhaes JM (2009) Internal solitary waves in the Mozambique Channel: observations and interpretation. J Geophys Res 114:C05001. doi: 10.1029/2008JC005125 CrossRefGoogle Scholar
  7. Edwards KA, MacCready P, Moum JN, Pawlak G, Klymak JM, Perlin A (2004) Form drag and mixing due to tidal flow past a sharp point. J Phys Oceanogr 34:1297–1312CrossRefGoogle Scholar
  8. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Tech 19:183–204CrossRefGoogle Scholar
  9. Elliott AJ (2002) The boundary layer character of tidal currents in the Eastern Irish Sea. Estuar Coast Shelf Sci 55:465–480CrossRefGoogle Scholar
  10. Foster DL, Beach RA, Holman RA (2000) Field observations of the wave bottom boundary layer. J Geophys Res 105:19634–19647CrossRefGoogle Scholar
  11. Friedrichs CT, Wright LD (1997) Sensitivity of bottom stress and bottom roughness estimates to density stratification, Eckernförde Bay, Southern Baltic Sea. J Geophys Res 102:5721–5732CrossRefGoogle Scholar
  12. Gargett AE, Osborn TR, Nasmyth PW (1984) Local isotropy and the decay of turbulence in a stratified fluid. J Fluid Mech 144:231–280CrossRefGoogle Scholar
  13. Gibson CH, Nabatov V, Ozmidov R (1993) Measurements of turbulence and fossil turbulence near ampere seamount. Dynam Atmos Ocean 19:175–204CrossRefGoogle Scholar
  14. Green MO, McCave IN (1995) Seabed drag coefficient under tidal currents in the eastern Irish Sea. J Geophys Res 100:16,057–16,069. doi: 10.1029/95JC01381 CrossRefGoogle Scholar
  15. Green JAM, Simpson JH, Legg S, Palmer MR (2008) Internal waves, baroclinic energy fluxes and mixing at the European shelf edge. Cont Shelf Res 28:937–950CrossRefGoogle Scholar
  16. Howarth MJ, Souza AJ (2005) Reynolds stress observations in continental shelf seas. Deep-Sea Res II 52:1075–1086CrossRefGoogle Scholar
  17. Kitaigorodskii SA (1992) The location of thermal shelf fronts and the variability of the heights of thermal boundary layers. Tellus A 44:425–433CrossRefGoogle Scholar
  18. Kitaigorodskii SA, Joffre SM (1988) In search of a simple scaling for the height of the stratified atmospheric boundary layer. Tellus A 40:419–433CrossRefGoogle Scholar
  19. Korotenko KA (1995) On the formation of mesoscale inhomogeneities of the matter concentration field in a local upwelling zone of the ocean. Oceanol Eng Transl 34(4):445–451Google Scholar
  20. Kunze E, Llewellyn Smith SG (2004) The role of small scale topography in turbulent mixing of the global ocean. Oceanography 17:51–60Google Scholar
  21. Kunze E, Toole JM (1997) Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J Phys Oceanogr 27:2663–2693CrossRefGoogle Scholar
  22. Lavelle JW, Lozovatsky ID, Smith DC IV (2004) Tidally induced turbulent mixing at Irving Seamount—modeling and measurements. Geophys Res Lett 31:L10308. doi: 10.1029/2004GL019706 CrossRefGoogle Scholar
  23. Lee JH, Lozovatsky I, Jang ST, Jang CJ, Hong CS, Fernando HJS (2006) Episodes of nonlinear internal waves in the northern East China Sea. Geophys Res Lett 33:L18601. doi: 10.1029/2006GL027136 CrossRefGoogle Scholar
  24. Li MZ (1994) Direct skin friction measurements and stress partitioning over movable sand ripples. J Geophys Res 99:791–799CrossRefGoogle Scholar
  25. Lien RC, Sanford TB (2004) Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer. Cont Shelf Res 24:375–392CrossRefGoogle Scholar
  26. Lilover M, Lozovatsky ID, Gibson CH, Nabatov VN (1993) Turbulent exchange through the equatorial undercurrent core of the Central Pacific. J Mar Syst 4:183–195CrossRefGoogle Scholar
  27. Liu H, Wu C, Xu W, Wu J (2009a) Contrasts between estuarine and river systems in near-bed turbulent flows in the Zhujiang (Pearl River) Estuary, China. Estuar Coast Shelf Sci 83:591–601CrossRefGoogle Scholar
  28. Liu Z, Wei H, Lozovatsky ID, Fernando HJS (2009b) Late summer stratification, internal waves, and turbulence in the Yellow Sea. J Mar Syst 77:459–472CrossRefGoogle Scholar
  29. Lozovatsky ID (1996) Turbulence decay in stratified and homogeneous marine layers. Dynam Atmos Ocean 24:15–25CrossRefGoogle Scholar
  30. Lozovatsky ID (1999) Seamount turbulence: generation and decay. Abstracts of XXII General Assembly of IUGG, Birmingham, UKGoogle Scholar
  31. Lozovatsky ID, Fernando HJS (2002) Turbulent mixing on a shallow shelf of the Black Sea. J Phys Oceanogr 32:945–956CrossRefGoogle Scholar
  32. Lozovatsky ID, Morozov EG, Fernando HJS (2003) Spatial decay of energy density of tidal internal waves. J Geophys Res 108:3201. doi: 10.1029/2001JC001169 CrossRefGoogle Scholar
  33. Lozovatsky I, Figueroa M, Roget E, Fernando HJS, Shapovalov S (2005) Observations and scaling of the upper mixed layer in the North Atlantic. J Geophys Res 110:C05013. doi: 10.1029/2004JC002708 CrossRefGoogle Scholar
  34. Lozovatsky ID, Liu Z, Wei H, Fernando HJS (2008a) Tides and mixing in the northwestern East China Sea part I: rotating and reversing flows. Cont Shelf Res 28:318–337CrossRefGoogle Scholar
  35. Lozovatsky ID, Liu Z, Wei H, Fernando HJS (2008b) Tides and mixing in the northwestern East China Sea Part II: near-bottom turbulence. Cont Shelf Res 28:338–350CrossRefGoogle Scholar
  36. Lu Y, Lueck RG (1999) Using a broadband ADCP in a tidal channel Part II: turbulence. J Atmos Oceanic Tech 16:1568–1579CrossRefGoogle Scholar
  37. Ludwick JC (1975) Variations in the boundary-drag coefficient in the tidal entrance to Chesapeake Bay, Virginia. Mar Geol 19:19–28CrossRefGoogle Scholar
  38. Lueck RG, Lu Y (1997) The logarithmic layer in a tidal channel. Cont Shelf Res 17:1785–1801CrossRefGoogle Scholar
  39. Lueck RG, Mudge TD (1997) Topographically induced mixing around a shallow seamount. Science 276:1831–1833CrossRefGoogle Scholar
  40. MacKinnon JA, Gregg MC (2003) Mixing on the late-summer New England Shelf—solibores, shear and stratification. J Phys Oceanogr 33:1476–1492CrossRefGoogle Scholar
  41. Matsuno T, Lee JS, Shimizu M, Kim SH, Pang IC (2006) Measurements of the turbulent energy dissipation rate ε and an evaluation of the dispersion process of the Changjiang Diluted Water in the East China Sea. J Geophys Res 111:C11S09. doi: 10.1029/2005JC003196 CrossRefGoogle Scholar
  42. Merrifield MA, Holloway PE (2002) Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J Geophys Res 107:3179. doi: 10.1029/2001JC00996 CrossRefGoogle Scholar
  43. Mohn C, Beckmann A (2002) The upper ocean circulation at Great Meteor Seamount. Part I: structure of density and flow fields. Ocean Dyn 52:179–193CrossRefGoogle Scholar
  44. Moum JN, Caldwell DR, Nash JD, Gunderson GD (2002) Observations of boundary mixing over the continental slope. J Phys Oceanogr 32:2113–2130CrossRefGoogle Scholar
  45. Moum JN, Perlin A, Klymak JM, Levine MD, Boyd T, Kosro PM (2004) Convectively driven mixing in the bottom boundary layer. J Phys Oceanogr 34:2189–2202CrossRefGoogle Scholar
  46. Mueller DS, Abad JD, García CM, Gartner JW, García MH, Oberg KA (2007) Errors in acoustic Doppler profiler velocity measurements caused by flow disturbance. J Hydr Engrg 133(12):1411–1420CrossRefGoogle Scholar
  47. Muste M, Dongsu K, González-Castro JA (2010) Near-transducer errors in ADCP measurements: experimental findings. J Hydr Engrg 136(5):275–289CrossRefGoogle Scholar
  48. Nabatov VN, Ozmidov RV (1988) A study of turbulence over underwater mountains in the Atlantic Ocean. Oceanology 28:210–217 (in Russian)Google Scholar
  49. Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109:C04027. doi: 10.1029/2003JC001923 CrossRefGoogle Scholar
  50. Oakey NS (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271CrossRefGoogle Scholar
  51. Paka VT, Nabatov VN, Lozovatsky ID, Dillon TM (1999) Oceanic microstructure measurements by “Baklan” and “Grif”. J Atmos Oceanic Tech 16:1519–1532CrossRefGoogle Scholar
  52. Palmer MR, Rippeth TP, Simpson JH (2008) An investigation of internal mixing in a seasonally stratified shelf sea. J Geophys Res 113:C12005. doi: 10.1029/2007JC004531 CrossRefGoogle Scholar
  53. Perlin A, Moum JN, Klymak JM, Levine MD, Boyd T, Kosro PM (2005) A modified law-of-the-wall applied to oceanic bottom boundary layers. J Geophys Res 110:C10S10. doi: 10.1029/2004JC002310 CrossRefGoogle Scholar
  54. Prandke H, Stips A (1998) Test measurements with an operational microstructure-turbulence profiler: detection limits of dissipation rates. Aquat Sci 60:191–209CrossRefGoogle Scholar
  55. Rippeth TP, Inall ME (2002) Observations of the internal tide and associated mixing across the Malin Shelf. J Geophys Res 107:3028. doi: 10.1029/2000JC000761 CrossRefGoogle Scholar
  56. Roget E, Lozovatsky I, Sanchez X, Figueroa M (2006) Microstructure measurements in natural waters: methodology and applications. Prog Oceanogr 70:123–148CrossRefGoogle Scholar
  57. Sanford TB, Lien RC (1999) Turbulent properties in a homogeneous tidal bottom boundary layer. J Geophys Res 104:1245–1257. doi: 10.1029/1998JC900068 CrossRefGoogle Scholar
  58. Schauer U (1987) Determination of bottom boundary layer parameters at two shallow sea sites using the profile method. Cont Shelf Res 7:1211–1230CrossRefGoogle Scholar
  59. Sherwin TJ, Vlasenko VI, Stashchuk N, Jeans DRG, Jones B (2002) Along-slope generation as an explanation for some unusually large internal tides. Deep-Sea Res I 49:1787–1799CrossRefGoogle Scholar
  60. Simpson JH, Crawford WR, Rippeth TP, Campbell AR, Cheok JVS (1996) The vertical structure of turbulent dissipation in shelf seas. J Phys Oceanogr 26:1579–1590CrossRefGoogle Scholar
  61. Smith JD, McLean SR (1977) Spatially averaged flow over a wavy surface. J Geophys Res 82:1735–1746CrossRefGoogle Scholar
  62. Soulsby R (1980) Selecting record length and digitization rate for near-bed turbulence measurements. J Phys Oceanogr 10(2):208–219CrossRefGoogle Scholar
  63. Stacey MT, Monismith SG, Burau JR (1999) Measurements of Reynolds stress profiles in tidal flows. J Geophys Res 104:10933–10949CrossRefGoogle Scholar
  64. Taylor JR, Sarkar S (2008) Stratification effects in a bottom Ekman layer. J Phys Oceanogr 38:2535–2555CrossRefGoogle Scholar
  65. Thorpe SA (2005) The turbulent ocean. Cambridge University Press, CambridgeGoogle Scholar
  66. Weatherly GL, Martin PJ (1978) On the dynamics and structure of the oceanic bottom boundary layer. J Phys Oceanogr 8:557–570CrossRefGoogle Scholar
  67. Wolk F, Yamazaki H, Seuront L, Lueck RG (2002) A new free-fall profiler for measuring biophysical microstructure. J Atmos Oceanic Tech 19:780–793CrossRefGoogle Scholar
  68. Xu Y, Fernando HJS, Boyer DL (1995) Turbulent wake of stratified flow passed a cylinder. Phys Fluids 7:2243–2255CrossRefGoogle Scholar
  69. Zilitinkevich SS, Esau I (2002) On integral measures of the neutral barotropic planetary boundary layers. Bound-Layer Meteorol 104:371–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Iossif Lozovatsky
    • 1
  • Zhiyu Liu
    • 2
    • 3
  • Harindra Fernando
    • 1
  • Jordi Armengol
    • 4
  • Elena Roget
    • 4
  1. 1.Environmental Fluid Dynamics Laboratories, Departments of Civil Engineering & Geological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental ScienceXiamen UniversityXiamenChina
  3. 3.Physical Oceanography Laboratory, College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  4. 4.Environmental Physics Group, Department of PhysicsUniversity of GironaGironaSpain

Personalised recommendations