Ocean Dynamics

, Volume 61, Issue 12, pp 2211–2228

Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta

  • Maximiliano G. Sassi
  • A. J. F. Hoitink
  • Benjamin de Brye
  • Bart Vermeulen
  • Eric Deleersnijder
Article
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2010

Abstract

Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little attention in the literature. This paper aims to quantify the tidal impact on subtidal discharge distribution at the bifurcations in the Mahakam Delta, East Kalimantan, Indonesia. The Mahakam Delta is a regular fan-shaped delta, composed of a quasi-symmetric network of rectilinear distributaries and sinuous tidal channels. A depth-averaged version of the unstructured-mesh, finite-element model second-generation Louvain-la-Neuve Ice-ocean Model has been used to simulate the hydrodynamics driven by river discharge and tides in the delta channel network. The model was forced with tides at open sea boundaries and with measured and modeled river discharge at upstream locations. Calibration was performed with water level time series and flow measurements, both spanning a simulation period. Validation was performed by comparing the model results with discharge measurements at the two principal bifurcations in the delta. Results indicate that within 10 to 15 km from the delta apex, the tides alter the river discharge division by about 10% in all bifurcations. The tidal impact increases seaward, with a maximum value of the order of 30%. In general, the effect of tides is to hamper the discharge division that would occur in the case without tides.

Keywords

Subtidal dynamics Finite elements River-tide interaction Hydrodynamic model Deltas Mahakam River discharge Differential water level setup 

References

  1. Allen GP, Chambers JLC (1998) Sedimentation in the modern and Miocene Mahakam delta. Indonesian Petroleum Association, Jakarta, p 236Google Scholar
  2. Bertoldi W, Tubino M (2007) River bifurcations: experimental observations on equilibrium configurations. Water Resour Res 43(10). doi:10.1029/2007WR005907
  3. Bolla-Pitaluga M, Repetto R, Tubino M (2003) Channel bifurcation in braided rivers: equilibrium configurations and stability. Water Resour Res 39(3):1046. doi:10.1029/2001WR001112 CrossRefGoogle Scholar
  4. de Brye B, de Brauwere A, Gourgue O, Krn T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coast Eng 57(9):850–863CrossRefGoogle Scholar
  5. de Brye B, Schellen S, Sassi M, Vermeulen B, Kärnä T, Deleersnijder E, Hoitink T (2011) Preliminary results of a finite-element, multi-scale model of the mahakam delta (Indonesia). Ocean Dyn 1–14 (in press). doi:10.1007/s10236-011-0410-y
  6. Buijsman MC, Ridderinkhof H (2007) Water transport at subtidal frequencies in the Marsdiep inlet. J Sea Res 58(4):255–268CrossRefGoogle Scholar
  7. Buschman FA, Hoitink AJF, Van Der Vegt M, Hoekstra P (2009) Subtidal water level variation controlled by river flow and tides. Water Resour Res 45(10). doi:10.1029/2009WR008167
  8. Buschman FA, Hoitink AJF, Van Der Vegt M, Hoekstra P (2010) Subtidal flow division at a shallow tidal junction. Water Resour Res 46(12). doi:10.1029/2010WR009266
  9. Dargahi B (2004) Three-dimensional flow modelling and sediment transport in the river Klaralven. Earth Surf Process Landf 29:821–852CrossRefGoogle Scholar
  10. Deleersnijder E, Lermusiaux PFJ (2008) Multi-scale modelling: nested-grid and unstructured-mesh approaches. Ocean Dyn 58(5–6):335–336CrossRefGoogle Scholar
  11. Deleersnijder E, Legat V, Lermusiaux PFJ (2010) Multi-scale modelling of coastal, shelf and global ocean dynamics. Ocean Dyn 60:1357–1359. doi:10.1007/s10236-010-0363-6 CrossRefGoogle Scholar
  12. Dinehart R, Burau J (2005a) Averaged indicators of secondary flow in repeated Acoustic Doppler Current Profiler crossings of bends. Water Resour Res 41. doi:10.1029/2005WR004050
  13. Dinehart R, Burau J (2005b) Repeated surveys by Acoustic Doppler Current Profiler for flow sediment dynamics in a tidal river. J Hydrol 314:1–21CrossRefGoogle Scholar
  14. Edmonds D, Slingerland R (2007) Mechanics of river mouth bar formation: implications for the morphodynamics of delta distributary networks. J Geophys Res. doi:10.1029/2006JF000574 Google Scholar
  15. Friedrichs CT, Aubrey DG (1994) Tidal propagation in strongly convergent channels. J Geophys Res 99(C2):3321–3336CrossRefGoogle Scholar
  16. Frings RM, Kleinhans M (2008) Complex variations in sediment transport at three large river bifurcations during discharge waves in te river Rhine. Sedimentology. doi:10.1111/j.1365-3091.2007.00940.x Google Scholar
  17. Godin G (1991) Compact approximations to the bottom friction term, for the study of tides propagating in channels. Cont Shelf Res 11(7):579–589CrossRefGoogle Scholar
  18. Godin G (1999) The propagation of tides up rivers with special considerations on the Upper Saint Lawrence River. Estuar Coast Shelf Sci 48:307–324CrossRefGoogle Scholar
  19. Godin G, Martinez A (1994) Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Cont Shelf Res 14(7):723–748CrossRefGoogle Scholar
  20. Hill AE, Souza AJ (2006) Tidal dynamics in channels: 2. Complex channel networks. J Geophys Res 111:C11021. doi:10.1029/2006JC003670 CrossRefGoogle Scholar
  21. Hoitink AJF (2008) Comment on “The origin of neap-spring tidal cycles” by Erik P. Kvale [Marine Geology 235 (2006) 5–18]. Ma Geol 248(1–2):122–125. doi:10.1016/j.margeo.2007.04.001 CrossRefGoogle Scholar
  22. Hoitink AJF, Buschman FA, Vermeulen B (2009) Continuous measurements of discharge from a Horizontal ADCP in a tidal river. Water Resour Res 45:W11406. doi:10.1029/2009WR007791 CrossRefGoogle Scholar
  23. Jay DA (1997) Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J Geophys Res 102:5705–5720CrossRefGoogle Scholar
  24. Kvale E (2006) The origin of neap-spring tidal cycles. Mar Geol 235:5–18CrossRefGoogle Scholar
  25. Lambrechts J, Comblen R, Legat V, Geuzaine C, Remacle J (2008a) Multiscale mesh generation on the sphere. Ocean Dyn 58(5–6):461–473CrossRefGoogle Scholar
  26. Lambrechts J, Hanert E, Deleersnijder E, Bernard P, Legat V, Remacle J, Wolanski E (2008b) A multiscale model of the hydrodynamics of the whole Great Barrier Reef. Estuar Coast Shelf Sci 79:143–151CrossRefGoogle Scholar
  27. Lane SN, Richards KS (1998) High resolution, two-dimensional spatial modelling of flow processes in a multi-thread channel. Hydrol Process 12:1279–1298CrossRefGoogle Scholar
  28. LeBlond P (1979) Forced fornightly tides in shallow rivers. Atmos Ocean 17(3):253–264CrossRefGoogle Scholar
  29. Legleiter CJ, Kyriakidis PC (2007) Forward and inverse transformations between cartesian and channel fitted coordinate systems for meandering rivers. Math Geol 38:927–958CrossRefGoogle Scholar
  30. Lutz G, Hubbell D, Stevens HJ (1975) Discharge and flow distribution, Columbia River estuary. Tech. rep., Geological Survey Professional Paper No., p 433Google Scholar
  31. Rennie C, Millar R, Church M (2002) Measurement of bed load velocity using an Acoustic Doppler Current Profiler. J Hydraul Eng 128:5:473–483Google Scholar
  32. Sassi M, Hoitink A, Vermeulen B, Hidayat (2011) Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed. Water Resour Res 47(W06504). doi:10.1029/2010WR009972
  33. Simpson M (2001) Discharge measurements using a broad-band Acoustic Doppler Current Profiler. Tech. rep., United States Geological SurveyGoogle Scholar
  34. Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50(4):2107–2115CrossRefGoogle Scholar
  35. Wang Z, Fokkink R, de Vries M, Langerak A (1995) Stability of river bifurcations in 1D morphodynamic models. J Hydraul Res 33:739–750CrossRefGoogle Scholar
  36. Warner JC, Schoellhamer D, Schladow G (2003) Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances. Estuar Coast Shelf Sci 56(3–4):629–639CrossRefGoogle Scholar
  37. Wolinsky MA, Edmonds DA, Martin J, Paola C (2010) Delta allometry: growth laws for river deltas. Geophys Res Lett 37:L21403. doi:10.1029/2010GL044592 CrossRefGoogle Scholar
  38. Zanichelli G, Caroni E, Fiorotto V (2004) River bifurcation analysis by physical and numerical modeling. J Hydraul Eng 130(3):237–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maximiliano G. Sassi
    • 1
  • A. J. F. Hoitink
    • 4
  • Benjamin de Brye
    • 2
    • 3
  • Bart Vermeulen
    • 1
  • Eric Deleersnijder
    • 3
  1. 1.Hydrology and Quantitative Water Management Group, Department of Environmental SciencesWageningen UniversityWageningen, GldThe Netherlands
  2. 2.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Earth and Life Institute (ELI), G. Lemaître Centre for Earth and Climate Research (TECLIM)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations