Ocean Dynamics

, Volume 61, Issue 12, pp 2073–2098 | Cite as

The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions

  • Nadia Senechal
  • Stéphane Abadie
  • Edith Gallagher
  • Jamie MacMahan
  • Gerd Masselink
  • Hervé Michallet
  • Ad Reniers
  • Gerben Ruessink
  • Paul Russell
  • Damien Sous
  • Ian Turner
  • Fabrice Ardhuin
  • Philippe Bonneton
  • Stéphane Bujan
  • Sylvain Capo
  • Raphael Certain
  • Rodrigo Pedreros
  • Thierry Garlan
Article

Abstract

A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.

Keywords

Field experiment Surf zone Swash zone Open barred beach Rip currents Morphodynamics 

Notes

Acknowledgements

We thank all those who have given financial support for this field experiment, in particular the French DGA. GM, PR and IT gratefully acknowledge funding from the UK Natural Environment Research Council (NERC; NE/F009275/1) and the Australian Research Council (ARC; DP0770118) and the assistance of their excellent field team. JHMM, AJHMR and EG gratefully acknowledge the funding from the USA NSF and the assistance of their team. BGR was funded by the Netherlands Organisation for Scientific Research (NWO) under project 864.04.007. We should like to thank NIWA (Hamilton—New Zealand) for providing support in the installation of the video system. We are most grateful to the lifeguards (CRS/MNS) for providing support during the field experiment. We thank the mayor of the city of Lege-Cap Ferret, Mr Sammarcelli, and his technical staff for providing logistic support. We also really appreciate the support of the French National Forest Office (ONF). Finally, we would like to point out that the list of authors is representative of most of the institutes involved in the field experiment but does not include everyone who contributed to the success of this field experiment. We are sincerely grateful to all the researchers, engineers, technicians, military personnel and students who made the field experiment possible. We greatly appreciated their invaluable help in making this field experiment a success despite the difficult weather conditions.

References

  1. Aagaard T, Kroon A, Andersen S, Moller Sorensen R, Quartel S, Vinther N (2005) Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar Geol 218:65–80CrossRefGoogle Scholar
  2. Almar R, Castelle B, Ruessink BG, Senechal N, Bonneton P, Marieu V (2009) High-frequency video observation of two nearby double barred beaches under high-energy wave forcing. J Coast Res SI56:1706–1710Google Scholar
  3. Almar R, Castelle B, Ruessink BG, Senechal N, Bonneton P, Marieu V (2010) Two- and three-dimensional double-sandbar system behaviour under intense wave forcing and a meso-macro tidal range. Cont Shelf Res 30(7):781–792CrossRefGoogle Scholar
  4. Arnaud G, Mory M, Abadie S, Cassen M (2009) Use of a resistive rods network to monitor bathymetric evolution in the surf/swash zone. J Coast Res SI56:1781–1785Google Scholar
  5. Austin MJ, Masselink G (2006) Observations of morphological change and sediment transport on a steep gravel beach. Mar Geol 229:59–77CrossRefGoogle Scholar
  6. Austin MJ, Scott TM, Brown JW, Brown J, MacMahan J (2009) Macrotidal rip current experiment: circulation and dynamics. J Coast Res SI56:24–28Google Scholar
  7. Berni C, Mignot E, Michallet H, Dalla-Costa C, Grasso F, Lagauzère M (2009) Diversity of bed evolution at wave and tidal scales on Truc-Vert beach. J Coast Res SI56:1726–1730Google Scholar
  8. Blenkinsopp CE, Turner IL, Masselink G, Russell PE (2009) Field measurements of net sediment flux from individual swashes on a sandy beach. In: Proc. Coastal Dynamics 2009, Tokyo, paper no. 27Google Scholar
  9. Blenkinsopp CE, Turner IL, Masselink G, Russell PE (2011) Swash zone sediment fluxes—field observations. Coast Eng 58:28–44CrossRefGoogle Scholar
  10. Bowen AJ (1969) The generation of longshore currents on a plane beach. J Mar Res 27:206–215Google Scholar
  11. Brander RW (1999) Field observations on the morphodynamic evolution of low wave energy rip current system. Mar Geol 157:199–217CrossRefGoogle Scholar
  12. Brander RW, Short AD (2000) Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand. Mar Geol 165:27–39CrossRefGoogle Scholar
  13. Brown J, MacMahan JH, Reniers A, Thornton E (2009) Surfzone diffusivity on a rip channeled beach. J Geophys Res. doi: 10.1029/2008JC005158
  14. Bruneau N, Castelle B, Bonneton P, Pederos R, Almar R, Bonneton N, Bretel P, Parisot JP, Senechal N (2009) Field observations of an evolving rip current on a meso-macrotidal inner bar and rip morphology. Cont Shelf Res 29:1650–1662CrossRefGoogle Scholar
  15. Bryan KR, Bowen AJ (1996) Edge wave trapping and amplification on barred beaches. J Geophys Res 101(3):6543–6552CrossRefGoogle Scholar
  16. Bryan KR, Bowen AJ (1998) Bar-trapped edge waves and longshore currents. J Geophys Res 103(12):27,867–27,884CrossRefGoogle Scholar
  17. Bryan KR, Howd PA, Bowen AJ (1998) Field observations of trapped edge waves. J Geophys Res 103(1):1285–1305CrossRefGoogle Scholar
  18. Butel R, Dupuis H, Bonneton P (2002) Spatial variability of wave conditions on the French Aquitanian coast using in-situ data. J Coast Res SI36:96–108Google Scholar
  19. Butt T, Russell P, Turner I (2001) The influence of swash infiltration–exfiltration on beach face sediment transport: onshore or offshore? Coast Eng 42:35–52CrossRefGoogle Scholar
  20. Capo S, Parisot JP, Bujan S, Senechal N (2009) Short time morphodynamic response of the Truc Vert Beach to storm conditions. J Coast Res SI56:1741–1745Google Scholar
  21. Castelle B, Bonneton P, Sénéchal N, Dupuis H, Butel R, Michel D (2006) Dynamics of wave-induced currents over an alongshore non-uniform multiple-barred sandy beach on the Aquitanian Coast, France. Cont Shelf Res 26(1):113–131CrossRefGoogle Scholar
  22. Castelle B, Bonneton P, Dupuis H, Senechal N (2007) Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian Coast: a review. Mar Geol 245:141–159CrossRefGoogle Scholar
  23. Castelle B, Michallet H, Marieu V, Leckler F, Dubardier B, Lambert A, Berni C, Bonneton P, Barthélemy E, Bouchette F (2010) Laboratory experiment on rip current circulations over a moveable bed: drifter measurements. J Geophys Res 115:C12008. doi: 10.1029/2010JC006343 CrossRefGoogle Scholar
  24. Coco G, Murray AB (2007) Patterns in the sand: from forcing templates to self-organization. Geomorphology 91(3–4):271–290CrossRefGoogle Scholar
  25. Dalrymple RA (1978) Rip currents and their causes. In: Proceedings of ICCE, ASCE, Hamburg, pp 1414–1427Google Scholar
  26. Davis RE (1991) Observing the general-circulation with floats. Deep-Sea Res 38:S531–S571Google Scholar
  27. De Melo Apoluceno D, Howa H, Dupuis H, Oggian G (2002) Morphodynamics of ridge and runnel systems during summer. J Coast Res SI36:222–230Google Scholar
  28. Dehouck A, Martiny N, Froidefond J-M, Sénéchal N, Bujan S (2009) New outcomes from spatial remote sensing during the ECORS experiment: towards validation of ocean color products and large-scale bathymetry mapping in a coastal zone. J Coast Res SI56:1756–1760Google Scholar
  29. Dodd N, Iranzo V, Reniers AJHM (2000) Shear instabilities of wave-driven alongshore currents. Rev Geophys 38(4):437CrossRefGoogle Scholar
  30. Dronen N, Deigaard R (2007) Quasi-three-dimensional modeling of the morphology of longshore bars. Coast Eng 54:197–215CrossRefGoogle Scholar
  31. Eckart C (1951) Surface waves on water of variable depth. Wave Rep. 100, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 99 ppGoogle Scholar
  32. Emmanuel I, Parisot JP, Michallet H, Barthélemy E, Sénéchal N (2009) Sediment transport particular events and beach profile response. J Coast Res SI56:1766–1770Google Scholar
  33. Feddersen F, Gallagher E, Guza RT, Elgar S (2003) The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coast Eng 48:189–195CrossRefGoogle Scholar
  34. Gallagher EL, Elgar S, Guza RT (1998) Observations of sand bar evolution on a natural beach. J Geophys Res 103:3203–3215CrossRefGoogle Scholar
  35. Gallagher EL, Thornton EB, Stanton TP (2003) Sand bed roughness in the nearshore. J Geophys Res 108(C2):3039. doi: 10.1029/2001JC001081 CrossRefGoogle Scholar
  36. Gallagher EL, Elgar S, Guza RT, Thornton EB (2005) Estimating nearshore bedform amplitudes with altimeters. Mar Geol 216:51–57CrossRefGoogle Scholar
  37. Gallagher EL, MacMahan JH, Reniers Ad JHM (2011) Grain size variability on a rip-channeled beach. Marine Geol (in press)Google Scholar
  38. Garnier R, Calvete D, Falques A, Caballeria M (2006) Generation and nonlinear evolution of shore oblique/transverse sand bars. J Fluid Mech 567:327–360CrossRefGoogle Scholar
  39. Grasmeijer BT, Van Rijn LC (2001) Sand transport in the surf zone of a dissipative beach. Coastal Dynamics, Lund, pp 102–111Google Scholar
  40. Grasso F, Michallet H, Barthelemy E, Certain R (2009) Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. J Geophys Res 114:C09001. doi: 10.1029/2009JC005308 CrossRefGoogle Scholar
  41. Grasso F, Michallet H, Barthélémy E (2011) Sediment transport associated with morphological beach changes forced by irregular asymmetric-skewed waves. J Geophys Res 116:C03020. doi: 10.1029/2010JC006550 CrossRefGoogle Scholar
  42. Guillén J, Hoekstra P (1996) The “equilibrium” distribution of grain size fractions and its implication for cross-shore sediment transport: a conceptual model. Mar Geol 135(issues 1–4):15–33CrossRefGoogle Scholar
  43. Guillén J, Hoekstra P (1997) Sediment distribution in the Nerashore zone: grain size evolution in response to shoreface nourishment (Island of Terschelling, The Netherlands). Estuar, Coast Shelf Sci 45:639–652CrossRefGoogle Scholar
  44. Haller MC, Dalrymple DA (2001) Rip current instabilities. J Fluid Mech 433:161–192Google Scholar
  45. Haller MC, Dalrymple RA, Svendsen IA (2002) Experimental study of nearshore dynamics on a barred beach with rip channels. J Geophys Res 107(14):1–21Google Scholar
  46. Herbers THC, Elgar S, Guza RT, O’Reilly WC (1995) Infragravity-frequency (0.005–0.05Hz) motions on the shelf, II, free waves. J Phys Oceanogr 25:1063–1079.Google Scholar
  47. Holman RA, Bowen A (1984) Longshore structure of infragravity wave motions. J Geophys Res 89(C4):6446–6452Google Scholar
  48. Horn DP (2002) Beach ground water dynamics. Geomorphology 48:121–146CrossRefGoogle Scholar
  49. Howd PJ, Bowen AJ, Holman RA (1992) Edge waves in the presence of strong longshore currents. J Geophys Res 100:24,863–24,872Google Scholar
  50. Hsu TJ, Elgar S, Guza RT (2006) Wave-induced sediment transport and onshore sandbar migration. Coast Eng 53:817–824CrossRefGoogle Scholar
  51. Hurther D, Lemmin U (2001) A correction method for turbulence measurements with a 3D acoustic Doppler velocimetry profiler. J Atmos Ocean Technol 18(3):446–458CrossRefGoogle Scholar
  52. Johnson D, Pattiaratchi C (2004) Transit rip currents and nearshore circulation on a swell-dominated beach. J Geophys Res 109:C02026. doi: 10.1029/2003JCC001798 CrossRefGoogle Scholar
  53. Kroon A, Masselink G (2002) Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Mar Geol 190:591–608CrossRefGoogle Scholar
  54. Lafon V, De Melo Apoluceno D, Dupuis H, Michel D, Howa H, Froidefond JM (2004) Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery. Estuar Coast Shelf Sci 61:289–299CrossRefGoogle Scholar
  55. Long JW, Özkan-Haller HT (2009) Low-frequency characteristics of wave group-forced vortices. J Geophys Res 144:CO8004. doi: 1029/2008JC004894 Google Scholar
  56. Lorin J, Viguier J (1987) Hydrosedimentary conditions and present evolution of Aquitaine Coast. Bull Inst Bassin Aquitaine 41:95–108Google Scholar
  57. MacMahan JHM, Reniers Ad JHM, Thornton EB, Stanton TP (2004) Surf zone eddies coupled with rip current morphology. J Geophys Res 109:C07004. doi: 10.1029/2003JC002083 CrossRefGoogle Scholar
  58. MacMahan JHM, Thornton EB, Stanton TP, Reniers AJHM (2005) RIPEX-rip currents on a shore-connected shoal beach. Mar Geol 218:113–134CrossRefGoogle Scholar
  59. MacMahan JHM, Thornton Ed B, Reniers Ad JHM, Stanton TP, Symonds G (2008) Low-energy rip currents associated with small bathymetric variations. Mar Geol 255(3–4):156–164CrossRefGoogle Scholar
  60. MacMahan JHM, Brown J, Brown J, Thornton Ed, Reniers Ad, Stanton T, Henriquez M, Gallagher E, Morrison J, Austin JM, Scott TM, Senechal N (2010a) Mean Lagrangian flow behaviour on open coast rip channeled beaches. Mar Geol 268:1–15CrossRefGoogle Scholar
  61. MacMahan JH, Reniers AJHM, Thornton EB (2010b) Vortical surf zone fluctuations within 0(10) min period. J Geophys Res 115:C06007. doi: 10.1029/2009JC005383 CrossRefGoogle Scholar
  62. Masselink G, Short AD (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual model. J Coast Res 9:785–800Google Scholar
  63. Masselink G, Austin M, Tinker J, O’Hara J, Russell P (2008) Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology, Truc Vert, France. Mar Geol 251:141–155CrossRefGoogle Scholar
  64. Masselink G, Russell PE, Turner IL, Blenkinsopp CE (2009) Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar Geol 267:18–35CrossRefGoogle Scholar
  65. Michallet H, Mory M, Piedra-Cueva I (2009) Wave-induced pore pressure measurements near a coastal structure. J Geophys Res 114:C06019. doi: 10.1029/2008JC005071 CrossRefGoogle Scholar
  66. Mignot E, Hurther D, Chassagneux F-X, Barnoud J-M (2009) A field study of the ripple vortex shedding process in the shoaling zone of a macro-tidal sandy beach. J Coast Res SI56:1776–1780Google Scholar
  67. Mory M, Michallet H, Bonjean D, Piedra-Cueva I, Barnoud J-M, Foray P, Abadie S, Breul P (2007) A field study of momentary liquefaction caused by saves around a coastal structure. J Waterw, Port, Coast Ocean Eng 133:28–38CrossRefGoogle Scholar
  68. Ngusaru AS, Hay AE (2004) Cross-shore migration of lunate megaripples during Duck94. J Geophys Res 109:C02006. doi: 10.1029/2002JC001532
  69. Noyes TJ, Guza RT, Elgar S, Herbers THC (2004) Field observations of shear waves in the surf zone. J Geophys Res 109:C01031. doi: 10.1029/2002JC001761 CrossRefGoogle Scholar
  70. Oltman-shay J, Guza RT (1987) Infragravity edge wave observations on two California beaches. J Phys Oceanogr 17(5):644–663CrossRefGoogle Scholar
  71. Oltman-Shay J, Howd PA, Birkemeier WA (1989) Shear instabilities of the mean longshore current 2. Field observations. J Geophys Res 94(C12):18031–18042CrossRefGoogle Scholar
  72. Parisot JP, Capo S, Castelle B, Bujan S, Moreau J, Gervais M, Réjas A, Hanquiez V, Almar R, Marieu V, Gaunet J, Gluard L, George I, Nahon A, Dehouck A, Certain R, Barthe P, Le Gall F, Bernardi PJ, Le Roy R, Pedreros R, Delattre M, Brillet J, Sénéchal N (2009) Evolution of a multi-barred sandy beaches in presence of very energetic events. J Coast Res SI56:1786–1790Google Scholar
  73. Pawka SS (1983) Island shadows in wave directional spectra. J Geophys Res 88(C4):2579–2591CrossRefGoogle Scholar
  74. Plant NG, Freilich MH, Holman RA (2001) Role of morphologic feedback in surf zone sandbar response. J Geophys Res 106(C1):973–989CrossRefGoogle Scholar
  75. Price TD, Ruessink BG (2008) Morphodynamic zone variability on a microtidal barred beach. Mar Geol 251:98–109CrossRefGoogle Scholar
  76. Quartel S, Ruessink BG, Kroon A (2007) Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology. Earth Surf Process Landf 32:1293–1307CrossRefGoogle Scholar
  77. Ranasinghe R, Symonds K, Holman R (2004) Morphodynamic of intermediate beaches: a video imaging and numerical modeling study. Coast Eng 51:629–655CrossRefGoogle Scholar
  78. Reichmüth B, Anthony EJ (2007) Tidal influence on the intertidal bar morphology of two contrasting macrotidal beaches. Geomorphology 90:101–114Google Scholar
  79. Rejas A, Senechal N, Capo S, Parisot JP, MacMahan JHM, Bryan KR, Coco G (2009) Field and video observations of morphological change during a large-scale, multi-institutional experiment (ECORS). In: Proceedings of Australasian Coasts and Ports, Wellington, September 2009Google Scholar
  80. Reniers Ad JHM, Roelvink JA, Thornton EB (2004) Morphodynamic modeling of an embayed beach under wave group forcing. J Geophys Res 109:C01030. doi: 10.1029/2002JC001586 CrossRefGoogle Scholar
  81. Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP (2006) Modelling infragravity motions on rip channel beach. Coast Eng 53:209–222CrossRefGoogle Scholar
  82. Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP (2007) Modeling of very low frequency motions during RIPEX. J Geophys Res. doi: 10.1029/2005JC003122
  83. Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP, Henriquez M, Brown JW, Brown JA, Gallagher E (2009) Surfzone surface retention on a rip channeled beach. J Geophys Res 114:C10010CrossRefGoogle Scholar
  84. Reniers Ad JHM, MacMahan JHM, Beron-Vera FJ, Olascoaga MJ (2010) Rip-current pulses tied to Lagrangian coherent structures. Geophys Res Lett 37:L05605. doi: 10.1029/2009GL041443 CrossRefGoogle Scholar
  85. Rubin DM (2004) A simple autocorrelation algorithm for determining grain size from digital images of sediment. J Sediment Res 74:160–165CrossRefGoogle Scholar
  86. Ruessink BG (2010) Observations of turbulence within a natural surf zone. J Phys Oceanogr 40(12):2696–2712CrossRefGoogle Scholar
  87. Ruessink BG, Kroon A (1994) The behaviour of a multiple bar system in the nearshore zone of Terschelling, the Netherlands: 1965–1993. Mar Geol 121:187–197CrossRefGoogle Scholar
  88. Ruessink BG, Houwman KT, Hoekstra P (1998) The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar Geol 152:295–324CrossRefGoogle Scholar
  89. Ruessink BG, Miles JR, Feddersen F, Guza RT, Elgar S (2001) Modeling the alongshore current on barred beaches. J Geophys Res 106:22,451–22,463CrossRefGoogle Scholar
  90. Ruessink BG, Coco G, Ranasinghe R, Turner IL (2007) Coupled and noncoupled behaviour of three-dimensional morphological patterns in a double sandbar system. J Geophys Res 112:C07002. doi: 10.1029/2006JC003799 CrossRefGoogle Scholar
  91. Ruggiero P, Komar PD, McDouglas WG, Marra JJ, Beach RA (2001) Wave runup, extreme water levels and erosion of properties backing beaches. J Coast Res 17(2):407–419Google Scholar
  92. Russell PE, Masselink G, Blenkinsopp C, Turner IL (2009) A comparison of berm accretion in the swash zone on sand and gravel beaches at the timescale of individual waves. J Coast Res SI56:1791–1795Google Scholar
  93. Ruz M-H, Hequette A, Maspataud A (2009) Identifying forcing conditions responsible for foredune erosion on the northern coast of France. J Coast Res SI56:356–360Google Scholar
  94. Ryrie SC (1983) Longshore motion due to an obliquely incident wave group. J Fluid Mech 137:273–284CrossRefGoogle Scholar
  95. Saulter AN, Russell PE, Gallagher EL, Miles JR (2003) Observations of bed level change in a saturated surf zone. J Geophys Res 108(C4):3112. doi: 10.1029/2000JC000684 CrossRefGoogle Scholar
  96. Schmidt WE, Guza RT, Slinn DN (2005) Surf zone currents over irregular bathymetry: drifter observations and numerical simulations. J Geophys Res 110:C12015. doi: 10.1029/2004JC002421
  97. Senechal N, Dupuis H, Bonneton P, Howa H, Pedreros R (2001) Observation of irregular wave transformation in the surf zone over a gently sloping sandy beach on the French Atlantic coastline. Oceanol Acta 24:545–556CrossRefGoogle Scholar
  98. Senechal N, Bonneton P, Dupuis H (2002) Field experiment on secondary wave generation on a barred beach and the consequent evolution of energy dissipation on the beach face. Coast Eng 46:233–247CrossRefGoogle Scholar
  99. Senechal N, Dupuis H, Bonneton P (2004) Preliminary hydrodynamic results of a field experiment on a barred beach, Truc Vert beach on October 2001. Ocean Dyn 54:408–414CrossRefGoogle Scholar
  100. Senechal N, Gouriou T, Castelle B, Parisot J-P, Capo S, Bujan S, Howa H (2009) Morphodynamic response of a meso macrotidal intermediate beach based on a long term data set. Geomorphology 107:263–274. doi: 10.1016/j.geomorph.2008.12.016 CrossRefGoogle Scholar
  101. Sénéchal N, Coco G, Bryan K, Holman RA (2011) Wave runup under extreme storm conditions. J Geophys Res Oceans. doi: 10.1029/2010JC006814
  102. Smit MWJ, Reniers AJHM, Ruessink BG, Roelvink JA (2008) The morphological response of a nearshore double sandbar system to constant wave forcing. Coast Eng 55:761–770CrossRefGoogle Scholar
  103. Spydell M, Feddersen F, Guza RT, Schmidt WE (2007) Observing surf-zone dispersion with drifters. J Phys Oceanogr 37(12):2920–2939CrossRefGoogle Scholar
  104. Symonds G, Ranasinghe R (2000) On the formation of rip currents on a plane beach, ICCE, Sydney, Australia, ASCE, pp 468–481Google Scholar
  105. Thomas S, Ridd PV (2004) Review of methods to measure short time scale sediment accumulation. Mar Geol 207(1–4):95–114CrossRefGoogle Scholar
  106. Thornton EB, Kim CS (1993) Longshore current and wave height modulation at tidal frequency inside the surf zone. J Geophys Res 98:16,509–16,520Google Scholar
  107. Thornton EB, Humiston RT, Birkemeier W (1996) Bar/trough generation on a natural beach. J Geophys Res 101(C5):12,097–12,110CrossRefGoogle Scholar
  108. Thornton E, Dalrymple T, Drake T, Gallagher E, Guza B, Hay A, Holman R, Kaihatu J, Lippmann T, Ozkan-Haller T (2000) State of nearshore processes research: II. Technical Report NPS-OC-00-001 Naval Postgraduate School, Monterey, California 93943Google Scholar
  109. Thornton E, Mac Mahan JH, Sallenger AH Jr (2007) Rip currents, mega-cusps, and eroding dunes. Mar Geol 1–4:151–167CrossRefGoogle Scholar
  110. Tissier M, Bonneton P, Almar R, Castelle B, Bonneton N (2009) Field observations of wave celerity in the surf zone. In: Proc. 19th CFM Congress, France, 6pGoogle Scholar
  111. Turner IL, Nielsen P (1997) Rapid watertable fluctuations: implications for swash zone sediment mobility. Coast Eng 32:45–59CrossRefGoogle Scholar
  112. Turner IL, Whyte D, Ruessink BG, Ranasinghe R (2007) Observations of rip spacing, persistence and mobility at a long straight coastline. Mar Geol 236(3–4):209–221CrossRefGoogle Scholar
  113. Turner IL, Russell PE, Butt T (2008) Measurement of wave-by-wave bed-levels in the swash zone. Coast Eng 55:1237–1242CrossRefGoogle Scholar
  114. Turner IL, Russell PE, Butt T, Masselink G, Blenkinsopp CE (2009) In-situ estimates of net sediment flux per swash: reply to discussion by TE Baldock of “Measurement of wave-by-wave bed-levels in the swash zone. Coast Eng 56:1009–1012CrossRefGoogle Scholar
  115. Van Enckevort IMJ, Ruessink BG (2003a) Video observations of nearshore bar behaviour, part I: alongshore uniform variability. Cont Shelf Res 23:501–512CrossRefGoogle Scholar
  116. Van Enckevort IMJ, Ruessink G (2003b) Video observations of nearshore bar behaviour, part II: alongshore non-uniform variability. Cont Shelf Res 23:513–532CrossRefGoogle Scholar
  117. Weir FM, Hughes MG, Baldock TE (2006) Beachface and berm morphodynamics fronting a coastal lagoon. Geomorphology 82:331–346CrossRefGoogle Scholar
  118. Wright LD, Short AD (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geol 56:93–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nadia Senechal
    • 1
  • Stéphane Abadie
    • 2
  • Edith Gallagher
    • 3
  • Jamie MacMahan
    • 4
  • Gerd Masselink
    • 5
  • Hervé Michallet
    • 6
  • Ad Reniers
    • 7
    • 16
  • Gerben Ruessink
    • 8
  • Paul Russell
    • 9
  • Damien Sous
    • 10
  • Ian Turner
    • 11
  • Fabrice Ardhuin
    • 12
  • Philippe Bonneton
    • 13
  • Stéphane Bujan
    • 13
  • Sylvain Capo
    • 1
  • Raphael Certain
    • 14
  • Rodrigo Pedreros
    • 15
  • Thierry Garlan
    • 12
  1. 1.OASU–EPOCUniversité Bordeaux ITalenceFrance
  2. 2.LaSAGeC2Université de Pau et des Pays de l’AdourAngletFrance
  3. 3.Department of BiologyFranklin and Marshall CollegeLancasterUSA
  4. 4.Oceanography DepartmentNaval Postgraduate SchoolMontereyUSA
  5. 5.School of GeographyUniversity of PlymouthPlymouthUK
  6. 6.LEGIGrenoble-INP/UJF/CNRSGrenoble cedexFrance
  7. 7.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  8. 8.Department of Physical Geography, Faculty of Geosciences, Institute for Marine and Atmospheric researchUtrecht UniversityUtrechtthe Netherlands
  9. 9.School of Earth, Ocean and Environmental SciencesUniversity of PlymouthPlymouthUK
  10. 10.LSEETUniversité de Toulon et du VarLa GardeFrance
  11. 11.Water Research Laboratory, School of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia
  12. 12.SHOM, Océanographie/RechercheBrest cedex 2France
  13. 13.OASU–EPOC, CNRSTalenceFrance
  14. 14.IMAGESUniversité de PerpignanPerpignan cedexFrance
  15. 15.BRGMOrléans cedex 2France
  16. 16.Civil Engineering and GeosciencesDelft University of TechnologyDelftthe Netherlands

Personalised recommendations