Advertisement

Ocean Dynamics

, Volume 61, Issue 10, pp 1629–1644 | Cite as

The influence of hydrodynamic boundary conditions on characteristics, migration, and associated sand transport of sand dunes in a tidal environment

A long-term study of the Elbe Estuary
  • Anna Christina Zorndt
  • Andreas Wurpts
  • Torsten Schlurmann
Article
Part of the following topical collections:
  1. Topical Collection on Physics of Estuaries and Coastal Seas 2010

Abstract

Large parts of the tidal estuary of river Elbe (Germany) are characterized by regular patterns of sand dunes. They evolve due to complex sand transport mechanisms and show multi-faceted migration patterns, which are influenced by hydrodynamic boundary conditions such as runoff and tidal forces. This study aims at increasing the understanding of the way hydrodynamic boundary conditions influence dune behavior. This is the basis of an effective sediment management as well as an important requirement for planning offshore structures. From a unique data set of up to six annual bathymetrical multibeam soundings between 1995 and 2010, bedform characteristics and migration rates were processed and analyzed with a set of automated methods. The influence of river runoff, water levels, current velocities, tidal range, and river depth on characteristics and migration were tested statistically. The results show that migration is mainly dominated by the incoming flood tide while rates and directions depend on the amount of runoff originating from the inland catchment.

Keywords

Sand dunes Dune migration Sand transport River runoff Elbe Estuary 

Notes

Acknowledgments

The authors would like to thank Hamburg Port Authority namely Nino Ohle and Thomas Strotmann for their kind support and for providing the data basis for this study.

References

  1. Amos CL, King EL (1984) Bedforms of the Canadian Eastern Seabord: a comparison with global occurances. Mar Geol 57:167–208CrossRefGoogle Scholar
  2. Bartholomä A, Schrottke K, Winter C (2008) Sand wave dynamics—surfing between assumptions and facts. Marine and River Dynamics 1–3:17–24Google Scholar
  3. Berne S, Castaing P, LeDrezen E, Lericolais G (1993) Morphology, internal structure and reversal of asymmetry of large subtidal dunes in the entrance to Girone Estuary (France). J Sediment Petrol 63:780–793Google Scholar
  4. Dalrymple R, Knight R, Lambiase J (1978) Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275(5676):100–104CrossRefGoogle Scholar
  5. Davies JL (1973) Geographical variation in coastal development. Hafner, New YorkGoogle Scholar
  6. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Neth J Sea Res 20(2/3):117–131CrossRefGoogle Scholar
  7. Duffy GP, Hughes-Clarke JE (2005) Application of spatial cross correlation to detection of migration of submarine sand dunes. J Geophys Res 110:F04S12CrossRefGoogle Scholar
  8. Führböter A (1967) Zur Mechanik der Strömungsriffel. Mitteilungen des Franzius-Instituts für Wasserbau und Küsteningenieurwesen der Technischen Universität Hannover, 29Google Scholar
  9. Führböter A (1979) Strömbänke (Großriffel) und Dünen als Stabilisierungsformen. Mitteilungen des Leichtweiß-Instituts der Technischen Universität Braunschweig, 67Google Scholar
  10. Gaeumann D, Jacobson RB (2007) Field assessment of alternative bed-load transport estimators. J Hydraul Eng 133:1319–1328CrossRefGoogle Scholar
  11. Kappenberg J, Fanger H-U (2007) Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und der Nordsee. GKSS-Forschungszentrum Geesthacht GmbHGoogle Scholar
  12. Knaapen MAF (2005) Sandwave migration predictor based on shape. J Geophys Res 110:FS0411CrossRefGoogle Scholar
  13. Masselink G, Cointre L, Williams J, Gehrels R, Blake W (2009) Tide-driven dune migration and sediment transport on an intertidal shoal in a shallow estuary in Devon, UK. Mar Geol 262:82–95CrossRefGoogle Scholar
  14. Milbradt P, Sellerhoff F, Krönert N (2004) KoDiBa - Entwicklung und Implementierung von Methoden zur Aufbereitung konsistenter digitaler Bathymetrien. Available at: imtg.bauinf.uni-hannover.de. Accessed 7 Jan 2009
  15. Mohrig D, Smith JD (1996) Predicting the migration rates of subaqueous dunes. Water Resour Res 32:3207–3217CrossRefGoogle Scholar
  16. Nasner H (1974) Über das Verhalten von Transportkörpern im Tidegebiet. Mitteilungen des Franzius-Instituts für Wasserbau und Küsteningenieurwesen der Technischen Universität Hannover 40:1–149Google Scholar
  17. Nemeth AA, Hulscher SJMH, de Vriend HJ (2007) Modelling sand wave migration in shallow shelf seas. Cont Shelf Res 22:2795–2806CrossRefGoogle Scholar
  18. Salomon JC, Allen GP (1983) Role sedimentologique de la maree dans les estuaires a fort marnage. Notes mém—Cie fr pét 18:35–44Google Scholar
  19. Simmons WG (1966) Estuaries and coastline hydrodynamics, chapter field experiments in estuaries. McGraw-Hill, New YorkGoogle Scholar
  20. Simons DB, Richardson EV, Nordin CF (1965) Bedload equations for ripples and dunes. US Geol Surv Prof Pap 462-HGoogle Scholar
  21. Van der Mark CF, Blom A (2007) A new and widely applicable tool for determining the geometric properties of bedforms. Technical report, University of TwenteGoogle Scholar
  22. Villard P, Church M (2003) Dunes and associated sand transport in a tidally influenced sand-bed channel: Fraser River, British Columbia. Can J Earth Sci 40:115–130CrossRefGoogle Scholar
  23. Zanke U (1982) Grundlagen der Sedimentbewegung. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anna Christina Zorndt
    • 1
  • Andreas Wurpts
    • 2
  • Torsten Schlurmann
    • 1
  1. 1.Franzius InstitutLeibniz Universität HannoverHannoverGermany
  2. 2.Forschungsstelle Küste, Nds. Landesbetrieb für Wasserwirtschaft, Küsten- und NaturschutzNorderneyGermany

Personalised recommendations