Ocean Dynamics

, Volume 61, Issue 10, pp 1441–1458 | Cite as

Heat budget of the surface mixed layer south of Africa

  • Vincent Faure
  • Michel Arhan
  • Sabrina Speich
  • Sergey Gladyshev


ARGO hydrographic profiles, two hydrographic transects and satellite measurements of air–sea exchange parameters were used to characterize the properties and seasonal heat budget variations of the Surface Mixed Layer (SML) south of Africa. The analysis distinguishes the Subtropical domain (STZ) and the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone (AZ) of the Antarctic Circumpolar Current. While no Subantarctic Mode Water forms in that region, occurrences of deep SML (up to ∼450 m) are observed in the SAZ in anticyclones detached from the Agulhas Current retroflection or Agulhas Return Current. These are present latitudinally throughout the SAZ, but preferentially at longitudes 10–20° E where, according to previous results, the Subtropical Front is interrupted. Likely owing to this exchange window and to transfers at the Subantarctic Front also enhanced by the anticyclones, the SAZ shows a wide range of properties largely encroaching upon those of the neighbouring domains. Heat budget computations in each zone reveal significant meridional changes of regime. While air–sea heat fluxes dictate the heat budget seasonal variability everywhere, heat is mostly brought through lateral geostrophic advection by the Agulhas Current in the STZ, through lateral diffusion in the SAZ and through air–sea fluxes in the PFZ and AZ. The cooling contributions are by Ekman advection everywhere, lateral diffusion in the STZ (also favoured by the ∼10° breach in the Subtropical Front) and geostrophic advection in the SAZ. The latter likely reflects an eastward draining of water warmed through mixing of the subtropical eddies.


Ocean surface mixed layer Heat budget Southern Ocean Agulhas Current retroflection 



This contribution to the CLIVAR/GoodHope programme was supported by the IFREMER programme “Circulation Océanique”, by INSU (Institut National des Sciences de l’Univers), by the CNRS (Centre National de la Recherche Scientifique) and by the Université de Bretagne Occidentale. V. Faure’s contribution was done while under post-doctorate studies at the Laboratoire de Physique des Océans, supported by a grant from the CNRS. S. Gladyshev’s participation was benefited by a contract for bilateral cooperation between the CNRS and the Russian Academy of Sciences. We are thankful to J.B. Sallée for providing us with his surface diffusivity values and to C. Messager for the useful discussions on the air–sea heat fluxes. The aid of A. Prigent in the preparation of some figures is acknowledged.


  1. Ansorge IJ, Lutjeharms JRE (2005) Direct observations of eddy turbulence at a ridge in the Southern Ocean. Geophys Res Lett 32:L14603. doi: 10.1029/2005GL022588 CrossRefGoogle Scholar
  2. Ansorge IJ, Lutjeharms JRE, Swart NC, Durgadoo JV (2006) Observational evidence for a cross frontal heat pump in the Southern Ocean. Geophys Res Lett 33:L19601. doi: 10.1029/2006GL026174 CrossRefGoogle Scholar
  3. Arhan M, Mercier H, Lutjeharms JRE (1999) The disparate evolution of three Agulhas rings in the South Atlantic Ocean. J Geophys Res 104:20987–21005CrossRefGoogle Scholar
  4. Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res 101:3675–3696CrossRefGoogle Scholar
  5. Branellec P, Arhan M, Speich S (2010) Projet GoodHope—Campagne BONUS/GoodHope, Rapport de données CTD-O2. IFREMER internal report OPS/LPO/10-02, 284 ppGoogle Scholar
  6. Chaigneau A, Morrow RA, Rintoul SR (2004) Seasonal and interannual evolution of the mixed layer in the Antarctic Zone south of Tasmania. Deep Sea Res I 51:2047–2072CrossRefGoogle Scholar
  7. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi: 10.1029/2004JC002378
  8. Dencausse G, Arhan M, Speich S (2010) Routes of Agulhas rings in the southeastern Cape Basin. Deep Sea Res I 57:1406–1421. doi: 10.1016/j.dsr.2010.07.008 CrossRefGoogle Scholar
  9. Dencausse G, Arhan M, Speich S (2011) Is there a continuous Subtropical Front south of Africa? J Geophys Res 116:C02027. doi: 10.1029/2010JC006587 CrossRefGoogle Scholar
  10. Dong S, Gille ST, Sprintall J (2007) An assessment of the Southern Ocean mixed layer heat budget. J Clim 20:4425–4442CrossRefGoogle Scholar
  11. Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from ARGO float profiles. J Geophys Res 113:C06013. doi:  10.1029/2006JC004051
  12. Fairall C, Bradley E, Hare J, Grachev A, Edson J (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591CrossRefGoogle Scholar
  13. Gladyshev S, Arhan M, Sokov A, Speich S (2008) A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep Sea Res I 55:1284–1303CrossRefGoogle Scholar
  14. Gordon AL, Lutjeharms JRE, Gründlingh ML (1987) Stratification and circulation at the Agulhas retroflection. Deep Sea Res 34:565–599CrossRefGoogle Scholar
  15. Lee-Thorp AM, Rouault M, Lutjeharms JRE (1998) Cumulus cloud formation above the Agulhas Current. S Afr J Sci 94:351–354Google Scholar
  16. Legeais JF, Speich S, arhan M, Ansorge I, Fahrbach E, Garzoli S, Klepikov A (2005) The baroclinic transport of the Antarctic Circumpolar Current south of Africa. Geophys Res Lett 32:L24602. doi: 10.1029/2005GL023271 CrossRefGoogle Scholar
  17. Lutjeharms JRE, Rouault M (2000) Observations of cloud formation above Agulhas Current intrusions in the Southeast Atlantic. S Afr J Sci 96:577–580Google Scholar
  18. Lutjeharms JRE, Valentine H (1988) Eddies at the subtropical convergence south of Africa. J Phys Oceanogr 18:761–774CrossRefGoogle Scholar
  19. McCartney MS (1977) Subantarctic mode water. In: Angel M (ed) A voyage of discovery. Pergamon, New York, pp 103–109Google Scholar
  20. Mey RD, Walker ND, Jury MR (1990) Surface heat fluxes and marine boundary layer modification in the Agulhas retroflection region. J Geophys Res 95:15997–16015CrossRefGoogle Scholar
  21. O’Neill LW, Chelton DB, Esbensen SK, Wentz FJ (2005) High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J Clim 18:2706–2723CrossRefGoogle Scholar
  22. Olson DB, Fine RA, Gordon AL (1992) Convective modifications of water masses in the Agulhas. Deep Sea Res 39(suppl1):S163–S181Google Scholar
  23. Orsi AH, Whitworth III T (2005) Hydrographic atlas of the World Ocean Circulation Experiment (WOCE), volume 1: Southern Ocean. WOCE International Project Office, University of Southampton, SouthamptonGoogle Scholar
  24. Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42:641–673CrossRefGoogle Scholar
  25. Park Y-H, Charriaud E, Ruiz PD, Jeandel C (1998a) Seasonal and interannual variability of the mixed layer properties and steric height at station KERFIX, southwest of Kerguelen. J Mar Syst 17:571–586CrossRefGoogle Scholar
  26. Park Y-H, Charriaud E, Fieux M (1998b) Thermohaline structure of the Antarctic surface water/winter water in the Indian sector of the Southern Ocean. J Mar Syst 17:5–23CrossRefGoogle Scholar
  27. Park Y-H, Charriaud E, Craneguy P (2001) Fronts, transport and Weddell Gyre at 30°E between Africa and Antarctica. J Geophys Res 106:2857–2879CrossRefGoogle Scholar
  28. Read JF, Pollard RT (1993) Structure and transport of the Antarctic Circumpolar Current and Agulhas Return Current at 40°E. J Geophys Res 98:12281–12295CrossRefGoogle Scholar
  29. Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia. J Geophys Res 106:31447–31462CrossRefGoogle Scholar
  30. Roether W, Samthein M, Müller TJ, Nellen W, Sahrhage D (1990) Südatlantik-Zircumpolarstrom, reise Nr 11, 3 Oktober 1989–11 März 1990, Meteor-Ber. 90–2, Univ. Hamburg, Hamburg, 169 ppGoogle Scholar
  31. Rouault M, Lutjeharms JRE (2000) Air–sea exchange over an Agulhas eddy at the subtropical convergence. Glob Atm Ocean Syst 7:125–150Google Scholar
  32. Sallée J-B, Wienders N, Speer K, Morrow R (2006) Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn 56:525–542CrossRefGoogle Scholar
  33. Sallée J-B, Morrow R, Speer K (2008a) Eddy heat diffusion and Subantarctic Mode Water formation. Geophys Res Lett 35:L05607. doi: 10.1029/2007GL032827 CrossRefGoogle Scholar
  34. Sallée J-B, Speer K, Morrow R, Lumpkin R (2008b) An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J Mar Res 66:441–463CrossRefGoogle Scholar
  35. Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J Geophys Res 114:C11018. doi: 10.1029/2008JC005108 CrossRefGoogle Scholar
  36. Walker ND, Mey RD (1988) Ocean/atmosphere heat fluxes within the Agulhas retroflection region. J Geophys Res 93:15473–15483CrossRefGoogle Scholar
  37. Whitworth T III, Nowlin WD (1987) Water masses and currents of the Southern Ocean at the Greenwich meridian. J Geophys Res 92:6462–6476CrossRefGoogle Scholar
  38. Yu L, Jin X, Weller RA (2008) Multidecade global flux data sets from the objectively analyzed air–sea fluxes (OAflux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, MassachusettsGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vincent Faure
    • 1
    • 2
  • Michel Arhan
    • 1
  • Sabrina Speich
    • 3
  • Sergey Gladyshev
    • 4
  1. 1.Laboratoire de Physique des Océans—UMR6523CNRS/IFREMER/IRD/UBO IFREMER/Centre de BrestPlouzanéFrance
  2. 2.Research Institute for Global ChangeJapan Agency for Marine–Earth Science and Technology (JAMSTEC)YokosukaJapan
  3. 3.Laboratoire de Physique des Océans— UMR6523CNRS/IFREMER/IRD/UBO UBO—UFR Sciences et TechniquesBrestFrance
  4. 4.Department of Marine OperationsShirshov Institute of OceanologyMoscowRussia

Personalised recommendations