Ocean Dynamics

, Volume 61, Issue 10, pp 1669–1680 | Cite as

Modelling environmentally friendly fairways using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea

  • Tarmo Soomere
  • Mihhail Berezovski
  • Ewald Quak
  • Bert Viikmäe
Article
Part of the following topical collections:
  1. Topical Collection on Joint Numerical Sea Modelling Group Workshop 2010

Abstract

We address possibilities of minimising environmental risks using statistical features of current-driven propagation of adverse impacts to the coast. The recently introduced method for finding the optimum locations of potentially dangerous activities (Soomere et al. in Proc Estonian Acad Sci 59:156–165, 2010) is expanded towards accounting for the spatial distributions of probabilities and times for reaching the coast for passively advecting particles released in different sea areas. These distributions are calculated using large sets of Lagrangian trajectories found from Eulerian velocity fields provided by the Rossby Centre Ocean Model with a horizontal resolution of 2 nautical miles for 1987–1991. The test area is the Gulf of Finland in the northeastern Baltic Sea. The potential gain using the optimum fairways from the Baltic Proper to the eastern part of the gulf is an up to 44% decrease in the probability of coastal pollution and a similar increase in the average time for reaching the coast. The optimum fairways are mostly located to the north of the gulf axis (by 2–8 km on average) and meander substantially in some sections. The robustness of this approach is quantified as the typical root mean square deviation (6–16 km) between the optimum fairways specified from different criteria. Drastic variations in the width of the ‘corridors’ for almost optimal fairways (2–30 km for the average width of 15 km) signifies that the sensitivity of the results with respect to small changes in the environmental criteria largely varies in different parts of the gulf.

Keywords

Risk modelling Lagrangian transport Statistics of currents Baltic Sea Pollution transport Ship routing 

References

  1. Albretsen J, Røed LP (2010) Decadal simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models. Ocean Dyn 60:933–955CrossRefGoogle Scholar
  2. Alenius P, Nekrasov A, Myrberg K (2003) The baroclinic Rossby-radius in the Gulf of Finland. Cont Shelf Res 23:563–573CrossRefGoogle Scholar
  3. Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16Google Scholar
  4. Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus 56A:548–558Google Scholar
  5. Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J Eng 16:187–210CrossRefGoogle Scholar
  6. Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:335–371CrossRefGoogle Scholar
  7. Blanke B, Raynard S (1997) Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagangian approach from GCM results. J Phys Oceanogr 27:1038–1053CrossRefGoogle Scholar
  8. De Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Oceanic Technol 18:1092–1101CrossRefGoogle Scholar
  9. Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res 100:C13499–C13514CrossRefGoogle Scholar
  10. Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:585–597CrossRefGoogle Scholar
  11. Döös K, Nycander J, Coward AC (2008) Lagrangian decomposition of the Deacon Cell. J Geophys Res 113:C07028CrossRefGoogle Scholar
  12. Engqvist A, Döös K, Andrejev O (2006) Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio 35:435–447CrossRefGoogle Scholar
  13. Gästgifvars M, Lauri H, Sarkanen A-K, Myrberg K, Andrejev O, Ambjörn C (2006) Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 70:567–576CrossRefGoogle Scholar
  14. Jönsson B, Lundberg P, Döös K (2004) Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. Ambio 23:257–260Google Scholar
  15. HELCOM (2009) Ensuring safe shipping in the Baltic (Stankiewicz M, Vlasov, N, eds.). Helsinki Commission, Helsinki, p 18Google Scholar
  16. Kachel MJ (2008) Particularly sensitive sea areas. Hamburg Studies on Maritime Affairs, 13, Springer, p 376Google Scholar
  17. Meier HEM (2001) On the parameterization of mixing in three-dimensional Baltic Sea models. J Geophys Res 106:C30997–C31016CrossRefGoogle Scholar
  18. Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627Google Scholar
  19. Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice–ocean model for the Baltic Sea: application to salt inflow. J Geophys Res 108:C3273CrossRefGoogle Scholar
  20. Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15:453–479Google Scholar
  21. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus 63A(1):4–23. doi:10.1111/j.1600-0870.2010.00478.x Google Scholar
  22. Soomere T, Quak E (2007) On the potential of reducing coastal pollution by a proper choice of the fairway. J Coast Res Special Issue 50:678–682Google Scholar
  23. Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Est Acad Sci 59:156–165CrossRefGoogle Scholar
  24. Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63Google Scholar
  25. Stokstad E (2009) U.S. poised to adopt national ocean policy. Science 326:1618CrossRefGoogle Scholar
  26. Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Progr Oceanogr 82:149–167CrossRefGoogle Scholar
  27. Viikmäe B, Soomere T, Viidebaum M, Berezovski A (2010) Temporal scales for transport patterns in the Gulf of Finland. Estonian J Eng 16:211–227Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tarmo Soomere
    • 1
  • Mihhail Berezovski
    • 1
  • Ewald Quak
    • 1
  • Bert Viikmäe
    • 1
  1. 1.Institute of Cybernetics at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations