Advertisement

Ocean Dynamics

, Volume 61, Issue 5, pp 701–715 | Cite as

Improved estimates of mean sea level changes in the German Bight over the last 166 years

  • Thomas Wahl
  • Jürgen Jensen
  • Torsten Frank
  • Ivan David Haigh
Article

Abstract

In this paper, mean sea level changes in the German Bight, the south-eastern part of the North Sea, are analysed. Records from 13 tide gauges covering the entire German North Sea coastline and the period from 1843 to 2008 have been used to derive high quality relative mean sea level time series. Changes in mean sea level are assessed using non-linear smoothing techniques and linear trend estimations for different time spans. Time series from individual tide gauges are analysed and then ‘virtual station’ time series are constructed (by combining the individual records) which are representative of the German Bight and the southern and eastern regions of the Bight. An accelerated sea level rise is detected for a period at the end of the nineteenth century and for another one covering the last decades. The results show that there are regional differences in sea level changes along the coastline. Higher rates of relative sea level rise are detected for the eastern part of the German Bight in comparison to the southern part. This is most likely due to different rates of vertical land movement. In addition, different temporal behaviour of sea level change is found in the German Bight compared to wider regional and global changes, highlighting the urgent need to derive reliable regional sea level projections for coastal planning strategies.

Keywords

North Sea German Bight Regional mean sea level changes Tide gauge data Vertical land movements 

Notes

Acknowledgements

We thank Svetlana Jevrejeva (Proudman Oceanographic Laboratory) and her colleagues for sharing the sea level reconstructions with the community and the Permanent Service of Mean Sea Level (PSMSL) for providing such products free of charge. We highly acknowledge the German Coastal Engineering Research Council (KFKI) and the German Federal Ministry of Education and Research (BMBF) for funding the research project “AMSeL–Mean Sea Level and Tidal Analysis at the German North Sea Coastline”. Two anonymous reviewers provided valuable comments helping us to improve the overall quality of this paper.

References

  1. Albrecht F, Wahl T, Jensen J, Weisse R (2011) Regional mean sea level changes in the German Bight in the 20th century (in press)Google Scholar
  2. Augath W (1993) Stand und Weiterentwicklung der Höhenüberwachung der niedersächsischen Nordseeküste. Nachr NiedersaÉchs Vermess–Katasterverwalt 43:78–92Google Scholar
  3. Bungenstock F, Schäfer A (2009) The Holocene relative sea-level curve for the tidal basin of the barrier island Langeoog, German Bight, Southern North Sea. Glob Planet Change 66(1–2):34–51CrossRefGoogle Scholar
  4. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2008) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65:83–88CrossRefGoogle Scholar
  5. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  6. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Climate 17:2609–2625CrossRefGoogle Scholar
  7. Church JA, White NJ, Aarup T, Wilson SW, Woodworth PL, Domingues CM, Hunter JR, Lambeck K (2008) Understanding global sea levels: past, present and future. Sustain Sci 3(1):9–22. doi: 10.1007/s11625-008-0042-4 CrossRefGoogle Scholar
  8. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093. doi: 10.1038/nature07080 CrossRefGoogle Scholar
  9. Douglas BC (1991) Global sea level rise. J Geophys Res 96(C4):6981–6992. doi: 10.1029/91JC00064 CrossRefGoogle Scholar
  10. Führböter A, Jensen J (1985) Säkularänderungen der mittleren Tidewasserstände in der Deutschen Bucht, Die Küste. Heft 42:78–100Google Scholar
  11. Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–471. doi: 10.1007/s00382-008-0507-2 CrossRefGoogle Scholar
  12. Haigh ID, Nicholls RJ, Wells NC (2009) Mean sea-level trends around the English Channel over the 20th century and their wider context. Cont Shelf Res 29:2083–2098CrossRefGoogle Scholar
  13. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  14. IKÜS (2008) Aufbau eines integrierten Höhenüberwachungssystems in Küstenregionen durch Kombination höhenrelevanter Sensorik (final report). Accessed from: http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/gi/gg/veroeffentlichungen/BMBF03KIS055-58.pdf. Accessed 31 January 2011
  15. Jensen J, Mudersbach C (2007) Zeitliche Änderungen in den Wasserstandszeitreihen an den Deutschen Küsten, in: Glaser R, Schenk W, Vogt J, Wießner R, Zepp H und Wardenga U. (Hrsg.), Berichte zur Deutschen Landeskunde, Themenheft: Küstenszenarien, Band 81, Heft 2, S. 99–112, Selbstverlag Deutsche Akademie für Landeskunde e.V., LeipzigGoogle Scholar
  16. Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi: 10.1029/2005JC003229 CrossRefGoogle Scholar
  17. Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703. doi: 10.1029/2010GL042947 CrossRefGoogle Scholar
  18. Mann HB (1945) Nonparametric test against trend. J Econometric Soc 13:245–259CrossRefGoogle Scholar
  19. McKee Smith J, Cialone MA, Wamsley TV, McAlpin TO (2010) Potential impact of sea level rise on coastal surges in southeast Louisiana. Ocean Eng 37–1:37–47CrossRefGoogle Scholar
  20. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. Miller L, Douglas BC (2007) Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys Res Lett 34:L16602. doi: 10.1029/2007GL030862 CrossRefGoogle Scholar
  22. Mitchum GT, Nerem RS, Merrifield MA, Gehrels WR (2010) Modern sea level change estimates. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford, UK. doi: 10.1002/9781444323276.ch5 Google Scholar
  23. Mitrovica JX, Tamisiea ME, Davis JL, Milne JL (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 409:1026–1029CrossRefGoogle Scholar
  24. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323:753. doi: 10.1126/science.1166510 CrossRefGoogle Scholar
  25. Mudersbach C, Jensen J (2010) Nonstationary extreme value analysis of annual maximum water levels for designing coastal structures on the German North Sea coastline. Journal of Flood Risk Management 3-1:52–62. doi: 10.1111/j.1753-318X.2009.01054.x
  26. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G(VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi: 10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  27. Pugh D (2004) Changing sea levels: effects of tides. Weather and Climate. Cambridge Univ Press, New YorkGoogle Scholar
  28. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315(5810):368–370. doi: 10.1126/science.1135456 CrossRefGoogle Scholar
  29. Schöne T, Schön N, Thaller D (2009) IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits. J Geodesy 83:249–261. doi: 10.1007/s00190-008-0269-y CrossRefGoogle Scholar
  30. Shennan I (1987) Holocene sea-level changes in the North Sea region. In: Tooley MJ, Shennan I (eds) Sea-level changes. Blackwell, Oxford, pp 109–151Google Scholar
  31. Shennan I, Horton B (2002) Holocene land- and sea-level changes in Great Britain. J Quatern Sci 17(5-6):511–526CrossRefGoogle Scholar
  32. Teferle FN, Bingley RM, Williams SDP, Baker TF, Dodson AH (2006) Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philos Trans R Soc London Ser A 364(1841):917–930. doi: 10.1098/rsta.2006.1746 CrossRefGoogle Scholar
  33. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. PNAS. doi: 10.1073/pnas.0907765106
  34. Wahl T, Jensen J, Frank T (2010) On analysing sea level rise in the German Bight since 1844. Nat Hazards Earth Syst Sci 10:171–179. doi: 10.5194/nhess-10-171-2010 CrossRefGoogle Scholar
  35. Woodworth PL (2006) Some important issues to do with long-term sea level change. Phil Trans R Soc A 2006(364):787–803. doi: 10.1098/rsta.2006.1737 CrossRefGoogle Scholar
  36. Woodworth P, White NJ, Jevrejeva S, Holgate SJ, Chuch JA, Gehrels WR (2008) Evidence for the accelerations of sea level on multi-decade and century time scales. Int J Climatol 29:777–789. doi: 10.1002/joc.1771 CrossRefGoogle Scholar
  37. Woodworth PL, Teferle FN, Bingley RM, Shennan I, Williams SDP (2009a) Trends in UK mean sea level revisited. Geophys J Int 176(22):19–30. doi: 10.1111/j.1365-246X.2008.03942.x CrossRefGoogle Scholar
  38. Woodworth PL, White NJ, Jevrejeva S, Holgate SJ, Church JA, Gehrels WR (2009b) Evidence for the accelerations of sea level on multi-decade and century timescales. Int J Climatol 29:777–789CrossRefGoogle Scholar
  39. Woodworth PL, Pouvreau N, Wöppelmann G (2010) The gyre-scale circulation of the North Atlantic and sea level at Brest. Ocean Sci 6:185–190. doi: 10.5194/os-6-185-2010 CrossRefGoogle Scholar
  40. Wöppelmann G, Miguez BM, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57:369–406CrossRefGoogle Scholar
  41. Wöppelmann G, Pouvreau N, Coulomb A, Simon B, Woodworth PL (2008) Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophys Res Lett 35:L22605. doi: 10.1029/2008GL035783 CrossRefGoogle Scholar
  42. Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Miguez BM (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi: 10.1029/2009GL038720 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Wahl
    • 1
  • Jürgen Jensen
    • 1
  • Torsten Frank
    • 1
  • Ivan David Haigh
    • 2
  1. 1.Research Institute for Water and EnvironmentUniversity of SiegenSiegenGermany
  2. 2.The UWA Oceans Institute and School of Environmental Systems EngineeringUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations