Ocean Dynamics

, Volume 61, Issue 4, pp 525–541 | Cite as

Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data

  • Chi Xu
  • Xiao-Dong ShangEmail author
  • Rui Xin Huang


Assuming eddy kinetic energy is equally partitioned between the barotropic mode and the first baroclinic mode and using the weekly TOPEX/ERS merged data for the period of 1993~2007, the mean eddy kinetic energy and eddy available gravitational potential energy in the world oceans are estimated at 0.157 and 0.224 EJ; the annual mean generation/dissipation rate of eddy kinetic energy and available gravitational potential energy in the world oceans is estimated at 0.203 TW. Scaling and data analysis indicate that eddy available gravitational potential energy and its generation/dissipation rate are larger than those of eddy kinetic energy.

High rate of eddy energy generation/dissipation is primarily concentrated in eddy-rich regions, such as the Antarctic Circumpolar Current and the western boundary current extensions. Outside of these regimes of intense current, the energy generation/dissipation rate is two to four orders of magnitude lower than the peak values; however, along the eastern boundaries and in the region where complicated topography and current interact the eddy energy generation/dissipation rate is several times larger than those in background.


Mesoscale eddies Altimetry data Generation/dissipation rate Two-layer model 



This study used altimeter data available by the AVISO Altimetry Operations Center, plus hydrographic data World Ocean Atlas 2001 provided by the US National Oceanographic Data Center. Reviewers' critical comments helped us improving the presentation of this paper. This study is supported by grants KZCX1-YW-12-02, 40976010, 40776008, and U1033002.


  1. Arbic BK, Flierl GR (2004) Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J Phys Oceanogr 34:2257–2273. doi: 10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2 CrossRefGoogle Scholar
  2. Arbic BK, Shriver JF, Hogan PJ, Hurlburt HE, McClean JL, Metzger EJ, Scott RB, Sen A, Smedstad OM, Wallcraft AJ (2009) Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J Geophys Res 114:C02024. doi: 10.1029/2008JC005072 CrossRefGoogle Scholar
  3. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi: 10.1175/2007MWR1978.1 CrossRefGoogle Scholar
  4. Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272:234–238. doi: 10.1126/science.272.5259.234 CrossRefGoogle Scholar
  5. Chelton DB, De Szoeke RA, Schlax MG (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2 CrossRefGoogle Scholar
  6. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007a) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi: 10.1029/2007GL030812 CrossRefGoogle Scholar
  7. Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke (2007b) Global observations of westward energy propagation in the ocean: Rossby waves or nonlinear eddies? Fall Meet. Suppl. abstract #OS13E-07, AGU Fall Meeting, 87(52), San Francisco, CA, USA.Google Scholar
  8. Cheney RE, Marsh JG, Beckley BD (1983) Global mesoscale variability from collinear tracks of SEASAT altimeter data. J Geophys Res 88:4343–4354. doi: 10.1029/JC088iC07p04343 CrossRefGoogle Scholar
  9. Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19,477–19,498. doi: 10.1029/2000JC900063 CrossRefGoogle Scholar
  10. Feng Y, Wang W, Huang RX (2006) Mesoscale available gravitational potential energy in the world oceans. Acta Oceanolog Sin 25:1–13Google Scholar
  11. Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282. doi: 10.1146/annurev.fluid.40.111406.102139 CrossRefGoogle Scholar
  12. Ferrari R, Wunsch C (2010) The distribution of eddy kinetic and potential energy in global ocean. Tellus Ser A 62:92–108. doi: 10.1111/j.1600-0870.2009.00432.x CrossRefGoogle Scholar
  13. Flierl GR (1978) Models of vertical structure and calibration of 2-layer models. Dyn Atmos Oceans 2:341–381. doi: 10.1016/0377-0265(78)90002-7 CrossRefGoogle Scholar
  14. Forget G, Wunsch C (2007) Estimated global hydrographic variability. J Phys Oceanogr 37:1997–2008. doi: 10.1175/JPO03072.1 CrossRefGoogle Scholar
  15. Frankignoul C, Muller P (1979) Quasi-geostrophic response of an infinite beta-plane ocean to stochastic forcing by the atmosphere. J Phys Oceanogr 9:104–127. doi: 10.1175/1520-0485(1979)009<0104:QGROAI>2.0.CO;2 CrossRefGoogle Scholar
  16. Fu L, Keffer T, Niiler P, Wunsch C (1982) Observations of mesoscale variability in the western North Atlantic: a comparative study. J Mar Res 40:809–848Google Scholar
  17. Gill AE, Green JSA, Simmons AJ (1974) Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Res 21:499–528. doi: 10.1016/0011-7471(74)90010-2 Google Scholar
  18. Gille S, Yale M, Sandwell D (2000) Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophys Res Lett 27:1251–1254. doi: 10.1029/1999GL007003 CrossRefGoogle Scholar
  19. Gould WJ, Schmitz WJ Jr, Wunsch C (1974) Preliminary field results for a Mid-Ocean Dynamics Experiment (MODE-0). Deep Sea Res 21:911–931. doi: 10.1016/0011-7471(74)90025-4 Google Scholar
  20. Huang RX (2005) Available potential energy in the world's oceans. J Mar Res 63:141–158. doi: 10.1357/0022240053693700 CrossRefGoogle Scholar
  21. Huang RX (2010) Ocean circulation, wind-driven and thermohaline processes. Cambridge University Press, Cambridge, p 806Google Scholar
  22. Huang RX, Pedlosky J (2002) On aliasing Rossby waves induced by asynchronous time stepping. Ocean Model 5:65–76. doi: 10.1016/S1463-5003(02)00014-8 CrossRefGoogle Scholar
  23. Huang, R. X., and W. Wang (2003) Gravitational potential energy sinks in the oceans, Near-boundary processes and their parameterization. In: Proceedings, Hawaii winter workshop. pp 239–247.Google Scholar
  24. Huang RX, Wang W, Liu LL (2006) Decadal variability of wind-energy input to the world ocean. Deep-Sea Research, Part II 53:31–41Google Scholar
  25. Killworth PD, Blundell JR (2007) Planetary wave response to surface forcing and instability in the presence of mean flow and topography. J Phys Oceanogr 37:1297–1320CrossRefGoogle Scholar
  26. Lapeyre G (2009) What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J Phys Oceanogr 39:2857–2874. doi: 10.1175/2009JPO3968.1 CrossRefGoogle Scholar
  27. Oort AH, Anderson LA, Peisxoto JP (1994) Estimates of the energy cycle of the oceans. J Geophys Res 99:7665–7688. doi: 10.1029/93JC03556 CrossRefGoogle Scholar
  28. Pedlosky J (1987) Geophysical Fluid Dynamics. Springer, New York, p 710Google Scholar
  29. Richardson PL (1983) Eddy kinetic energy in the North Atlantic from surface drifters. J Geophys Res 88:4355–4367. doi: 10.1029/JC088iC07p04355 CrossRefGoogle Scholar
  30. Roemmich D, Gilson J (2001) Eddy transport of heat and thermo-cline waters in the North Pacific: a key to interannual/decadal climate variability? J Phys Oceanogr 31:675–687. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2 CrossRefGoogle Scholar
  31. Scott R, Xu Y (2009) An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep Sea Res I 56:295–304. doi: 10.1016/j.dsr.2008.09.010 CrossRefGoogle Scholar
  32. Sen A, Scott R, Arbic B (2008) Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: computations from current-meter data. Geophys Res Lett 35:L09606. doi: 10.1029/2008GL033407 CrossRefGoogle Scholar
  33. Shum CK, Werner RA, Sandwell DT, Zhang BH, Nerem RS, Tapley BD (1990) Variations of global mesoscale eddy energy observed from GEOSAT. J Geophys Res 95:17865–17876. doi: 10.1029/JC095iC10p17865 CrossRefGoogle Scholar
  34. Smith K (2007) The geography of linear baroclinic instability in Earth’s oceans. J Mar Res 65:655–683. doi: 10.1357/002224007783649484 CrossRefGoogle Scholar
  35. Stammer D (1997) Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J Phys Oceanogr 27:1743–1769. doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2 CrossRefGoogle Scholar
  36. Stammer D, Boning C, Dieterich C (2001) The role of variable wind forcing in generating eddy energy in the North Atlantic. Prog Oceanogr 48:289–311. doi: 10.1016/S0079-6611(01)00008-8 CrossRefGoogle Scholar
  37. Wang G, Su J, Chu P (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett 30:2121. doi: 10.1029/2003GL018532 CrossRefGoogle Scholar
  38. Wunsch C (1997) The vertical partition of oceanic horizontal kinetic energy. J Phys Oceanogr 27:1770–1794. doi: 10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2 CrossRefGoogle Scholar
  39. Wunsch C (1998) The work done by the wind on the oceanic general circulation. J Phys Oceanogr 28:2332–2340. doi: 10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2 CrossRefGoogle Scholar
  40. Wunsch C (2007) The past and future ocean circulation from a contemporary perspective, Ocean circulation: mechanisms and impacts: past and future changes of meridional overturning. Geophysical Monograph-American Geophysics Union 173:53–74Google Scholar
  41. Wunsch C, Ferrari R (2004) Vertical mixing, energy and the general circulation of the oceans. Ann Rev Fluid Mech 36:281–314. doi: 10.1146/annurev.fluid.36.050802.122121 CrossRefGoogle Scholar
  42. Wyrtki K, Magaard L, Hager J (1976) Eddy Energy in the Oceans. J Geophys Res 81:2641–2646. doi: 10.1029/JC081i015p02641 CrossRefGoogle Scholar
  43. Yuan D, Han W, Hu D (2006) Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res 111:C11007. doi: 10.1029/2005JC003412 CrossRefGoogle Scholar
  44. Zamudio L, Hurlburt HE, Metzger EJ, Tilburg CE (2007) Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands Mexico. J Geophys Res 112:C05048. doi: 10.1029/2006JC004018 CrossRefGoogle Scholar
  45. Zlotnicki V, Fu LL, Patzert W (1989) Seasonal variability in global sea level observed with geosat altimetry. J Geophys Res 94:17959–17969. doi: 10.1029/JC094iC12p17959 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations