Advertisement

Ocean Dynamics

, Volume 61, Issue 5, pp 599–610 | Cite as

Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight

  • Alexander BarthEmail author
  • Aida Alvera-Azcárate
  • Jean-Marie Beckers
  • Joanna Staneva
  • Emil V. Stanev
  • Johannes Schulz-Stellenfleth
Article
Part of the following topical collections:
  1. Topical Collection on Multiparametric observation and analysis of the Sea

Abstract

Surface winds are crucial for accurately modeling the surface circulation in the coastal ocean. In the present work, high-frequency radar surface currents are assimilated using an ensemble scheme which aims to obtain improved surface winds taking into account European Centre for Medium-Range Weather Forecasts winds as a first guess and surface current measurements. The objective of this study is to show that wind forcing can be improved using an approach similar to parameter estimation in ensemble data assimilation. Like variational assimilation schemes, the method provides an improved wind field based on surface current measurements. However, the technique does not require an adjoint, and it is thus easier to implement. In addition, it does not rely on a linearization of the model dynamics. The method is validated directly by comparing the analyzed wind speed to independent in situ measurements and indirectly by assessing the impact of the corrected winds on model sea surface temperature (SST) relative to satellite SST.

Keywords

Data assimilation Ensemble simulation High-frequency radar Surface currents 

Notes

Acknowledgements

Klaus-Werner Gurgel from the University of Hamburg is thanked for providing the HF radar observations. The National Fund for Scientific Research, Belgium is acknowledged for funding the post-doctoral positions of the two first authors. This work was supported by the ECOOP project (European Coastal-shelf sea Operational observing and forecasting system) of the European Union. AVHRR Oceans Pathfinder SST data were obtained through the online PO.DAAC Ocean ESIP Tool (POET) at the Physical Oceanography Distributed Active Archive Center (PO.DAAC), NASA Jet Propulsion Laboratory, Pasadena, CA (http://podaac.jpl.nasa.gov/poet). Wind observations were obtained through the Web-based Weather Request and Distribution System from the German Meteorological Service (Deutscher Wetterdienst). We thank also two anonymous referees for their valuable comments and their constructive suggestions. This is a MARE publication.

References

  1. Aksoy A, Zhang F, Nielsen-Gammon JW (2006) Ensemble-based simultaneous state and parameter estimation with MM5. Geophys Res Lett 33:L12801CrossRefGoogle Scholar
  2. Anderson JL (2001) An ensemble adjustment filter for data assimilation. Mon Weather Rev 129:2884–2903CrossRefGoogle Scholar
  3. Annan J, Lunt D, Hargreaves J, Valdes P (2005) Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys 12:363–371CrossRefGoogle Scholar
  4. Barrick D, Evans M, Weber B (1977) Ocean surface currents mapped by radar. Science 198:138–144CrossRefGoogle Scholar
  5. Barth A, Alvera-Azcárate A, Beckers JM, Rixen M, Vandenbulcke L (2007) Multigrid state vector for data assimilation in a two-way nested model of the Ligurian Sea. J Mar Syst 65(1–4):41–59. doi: 10.1016/j.jmarsys.2005.07.006. http://hdl.handle.net/2268/4260 CrossRefGoogle Scholar
  6. Barth A, Alvera-Azcárate A, Weisberg RH (2008) Assimilation of high-frequency radar currents in a nested model of the West Florida Shelf. J Geophys Res 113:C08033. doi: 10.1029/2007JC004585. http://hdl.handle.net/2268/26171 CrossRefGoogle Scholar
  7. Barth A, Alvera-Azcárate A, Gurgel KW, Staneva J, Port A, Beckers JM, Stanev EV (2010) Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—application to the German Bight. Ocean Sci 6(1):161–178. doi: 10.5194/os-6-161-2010. http://www.ocean-sci.net/6/161/2010/ CrossRefGoogle Scholar
  8. Béal D, Brasseur P, Brankart JM, Ourmières Y, Verron J (2010) Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis. Ocean Sci 6:247–262. doi: 10.5194/os-6-247-2010 CrossRefGoogle Scholar
  9. Brankart JM, Testut CE, Brasseur P, Verron J (2003) Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: application to a 1993–96 hindcast of the North Atlantic Ocean circulation. J Geophys Res 108(C3):3074. doi: 10.1029/2001JC001198 CrossRefGoogle Scholar
  10. Breivik O, Satra O (2001) Real time assimilation of HF radar currents into a coastal ocean model. J Mar Syst 3–4:161–182CrossRefGoogle Scholar
  11. Burchard H, Bolding K (2002) GETM—a general estuarine transport model. Scientific documentation. Tech. Rep. EUR 20253 EN, European CommissionGoogle Scholar
  12. Chen Y, Snyder C (2007) Assimilating vortex position with an ensemble Kalman filter. Mon Weather Rev 135:1828–1845CrossRefGoogle Scholar
  13. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162CrossRefGoogle Scholar
  14. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi: 10.1007/s10236-003-0036-9 CrossRefGoogle Scholar
  15. Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, New York, p 279Google Scholar
  16. Gelb A (1974) Applied optimal estimation. MIT, Cambridge, p 374Google Scholar
  17. Greenwald TJ, Hertenstein R, Vukićević T (2002) An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon Weather Rev 130:1882–1897CrossRefGoogle Scholar
  18. Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790CrossRefGoogle Scholar
  19. He R, Liu Y, Weisberg RH (2004) Coastal ocean wind fields gauged against the performance of an ocean circulation model. Geophys Res Lett 31:L14303. doi: 10.1029/2003GL019261 CrossRefGoogle Scholar
  20. Hoteit I, Cornuelle BD, Kim SY, Forget G, Köhl A, Terrill EJ (2009) Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dyn Atmos Oceans 48:175–197. doi: 10.1016/j.dynatmoce.2008.11.005 CrossRefGoogle Scholar
  21. Hunt BR, Kalnay E, Kostelich EJ, Ott E, Patil DJ, Sauer T, Szunyogh I, Yorke JA, Zimin AV (2004) Four-dimensional ensemble Kalman filtering. Tellus 56A:273–277Google Scholar
  22. Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230:112–126CrossRefGoogle Scholar
  23. Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6:238–242CrossRefGoogle Scholar
  24. Kurapov AL, Egbert GD, Allen JS, Miller RN, Erofeeva SY, Kosro P (2003) The M2 internal tide off Oregon: inferences from data assimilation. J Phys Oceanogr 33:1733–1757CrossRefGoogle Scholar
  25. van Leeuwen PJ (2001) An ensemble smoother with error estimates. Mon Weather Rev 129:709–728CrossRefGoogle Scholar
  26. Lewis JK, Shulman I, Blumberg AF (1998) Assimilation of CODAR observations into ocean models. Cont Shelf Res 18:541–559CrossRefGoogle Scholar
  27. Ljung L (1979) Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans Autom Control 24:36–50CrossRefGoogle Scholar
  28. Losa SN, Kivman GA, Schroter J, Wenzel M (2003) Sequential weak constraint parameter estimation in an ecosystem model. J Mar Syst 43:31–49CrossRefGoogle Scholar
  29. Lucas MA, Ayoub N, Barnier B, Penduff T, de Mey P (2008) Stochastic study of the temperature response of the upper ocean to uncertainties in the atmospheric forcing in an Atlantic OGCM. Ocean Model 20:90–113. doi: 10.1016/j.ocemod.2007.07.006 CrossRefGoogle Scholar
  30. Malanotte-Rizzoli P, Young RE, Haidvogel DB (1989) Initialization and data assimilation experiments with a primitive equation model. Dyn Atmos Oceans 13:349–378CrossRefGoogle Scholar
  31. Menemenlis D, Fieguth P, Wunsch C, Willsky A (1997) Adaptation of a fast optimal interpolation algorithm to the mapping of oceanographic data. J Geophys Res 102(C5):10573–10584CrossRefGoogle Scholar
  32. Mourre B, Ballabrera-Poy J, Garcia-Ladona E, Font J (2008) Surface salinity response to changes in the model parameters and forcings in a climatological simulation of the eastern North-Atlantic Ocean. Ocean Model 23:21–32CrossRefGoogle Scholar
  33. Oke PR, Allen JS, Miller RN, Egbert GD, Kosro PM (2002) Assimilation of surface velocity data into a primitive equation coastal ocean model. J Geophys Res 107(C9):5-1–5-25CrossRefGoogle Scholar
  34. Paduan JD, Shulman I (2004) HF radar data assimilation in the Monterey Bay area. J Geophys Res 109:C07S09CrossRefGoogle Scholar
  35. Pham DT, Verron J, Roubaud MC (1998) A singular evolutive extended Kalman filter for data assimilation in oceanography. J Mar Syst 16(3–4):323–340CrossRefGoogle Scholar
  36. PRISMA (1994) Prozesse im Schadstoffkreislauf Meer-Atmosphäre: Ökosystem Deutsche Bucht. BMFT-Projekt 03F0558A1 (1.1.1990–31.10.1993). Abschlussbericht, ZMK-Universität HamburgGoogle Scholar
  37. Sakov P, Evensen G, Bertino L (2010) Asynchronous data assimilation with the EnKF. Tellus 62A:24–29Google Scholar
  38. Shulman I, Paduan JD (2009) Assimilation of HF radar-derived radials and total currents in the Monterey Bay area. Deep Sea Res II: Topical Studies in Oceanography 56(3–5):149–160. doi: 10.1016/j.dsr2.2008.08.004 CrossRefGoogle Scholar
  39. Skachko S, Brankart JM, Castruccio F, Brasseur P, Verron J (2009) Improved turbulent air-sea flux bulk parameterization for controlling the response of the ocean mixed layer: a sequential assimilation approach. J Atmos Ocean Technol 26:538–555CrossRefGoogle Scholar
  40. Skandrani C, Brankart JM, Ferry N, Verron J, Brasseur P, Barnier B (2009) Controlling atmospheric forcing parameters of global ocean models: sequential assimilation of sea surface Mercator-Ocean reanalysis data. Ocean Sci 5:1–15CrossRefGoogle Scholar
  41. Staneva J, Stanev EV, Wolff JO, Badewien TH, Reuter R, Flemming B, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29:302–319CrossRefGoogle Scholar
  42. Talagrand O (1972) On the damping of high-frequency motions in four-dimensional assimilation of meteorological data. J Atmos Sci 29:1571–1547CrossRefGoogle Scholar
  43. Vandenbulcke L, Rixen M, Beckers JM, Alvera-Azcárate A, Barth A (2008) An analysis of the error space of a high-resolution implementation of the GHER hydrodynamic model in the Mediterranean Sea. Ocean Model 24(1–2):46–64. doi:  10.1016/j.ocemod.2008.05.007. http://hdl.handle.net/2268/4263 CrossRefGoogle Scholar
  44. Wilkin JL, Arango HG, Haidvogel DB, Lichtenwalner CS, Glenn SM, Hedström KS (2005) A regional ocean modeling system for the Long-term Ecosystem Observatory. J Geophys Res 110:C06S91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexander Barth
    • 1
    Email author
  • Aida Alvera-Azcárate
    • 1
  • Jean-Marie Beckers
    • 1
  • Joanna Staneva
    • 2
  • Emil V. Stanev
    • 2
  • Johannes Schulz-Stellenfleth
    • 2
  1. 1.GeoHydrodynamics and Environment Research (GHER), MARELiègeBelgium
  2. 2.GKSS Research CentreGeesthachtGermany

Personalised recommendations