Advertisement

Ocean Dynamics

, Volume 60, Issue 6, pp 1395–1414 | Cite as

A discontinuous finite element baroclinic marine model on unstructured prismatic meshes

Part II: implicit/explicit time discretization
  • Richard Comblen
  • Sébastien Blaise
  • Vincent LegatEmail author
  • Jean-François Remacle
  • Eric Deleersnijder
  • Jonathan Lambrechts
Article

Abstract

We describe the time discretization of a three-dimensional baroclinic finite element model for the hydrostatic Boussinesq equations based upon a discontinuous Galerkin finite element method. On one hand, the time marching algorithm is based on an efficient mode splitting. To ensure compatibility between the barotropic and baroclinic modes in the splitting algorithm, we introduce Lagrange multipliers in the discrete formulation. On the other hand, the use of implicit–explicit Runge–Kutta methods enables us to treat stiff linear operators implicitly, while the rest of the nonlinear dynamics is treated explicitly. By way of illustration, the time evolution of the flow over a tall isolated seamount on the sphere is simulated. The seamount height is 90% of the mean sea depth. Vortex shedding and Taylor caps are observed. The simulation compares well with results published by other authors.

Keywords

Baroclinic marine model Discontinuous Galerkin methods Time discretization 

Notes

Acknowledgements

Sébastien Blaise and Jonathan Lambrechts are research fellows with the Belgian Fund for Research in Industry and Agriculture (FRIA). Richard Comblen is a research fellow with the Belgian National Fund for Scientific Research (FNRS). Eric Deleersnijder is a research associate with the Belgian National Fund for Scientific Research (FNRS). The research was conducted within the framework of the Interuniversity Attraction Pole TIMOTHY (IAP 6.13), funded by the Belgian Science Policy (BELSPO), and the programme ARC 04/09-316, funded by the Communauté Française de Belgique.

References

  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 95:2293–2315CrossRefGoogle Scholar
  2. Ascher UM, Ruuth SJ, Spiteri RJ (1997) Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl Numer Math 25:151–167CrossRefGoogle Scholar
  3. Ascher UM, Ruuth SJ, Wetton BT (1995) Implicit–explicit methods for time-dependent partial differential equations. SIAM J Numer Anal 32:797–823CrossRefGoogle Scholar
  4. Blaise S, Comblen R, Legat V, Remacle J-F, Deleersnijder E, Lambrechts J (2010) A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Part I: space discretization. Ocean Dyn (in this issue)Google Scholar
  5. Blumberg AF, Mellor GL (1987) A description of three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three dimensional coastal ocean model. American Geophysical Union, Washington, DC, pp 1–16Google Scholar
  6. Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Comput Phys 4:347–376CrossRefGoogle Scholar
  7. Chapman DC, Haidvogel DB (1992) Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophys Astrophys Fluid Dyn 64:31–65CrossRefGoogle Scholar
  8. Chapman DC, Haidvogel DB (1993) Generation of internal lee waves trapped over a tall isolated seamount. Geophys Astrophys Fluid Dyn 69:33–54CrossRefGoogle Scholar
  9. Chevaugeon N, Hillewaert K, Gallez X, Ploumhans P, Remacle J-F (2007) Optimal numerical parametrization of discontinuous Galerkin method applied to wave propagation problems. J Comput Phys 223:188–207CrossRefGoogle Scholar
  10. Cockburn B, Shu C-W (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16:173–261CrossRefGoogle Scholar
  11. Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice Hall, New YorkGoogle Scholar
  12. Deleersnijder E (1993) Numerical mass conservation in a free-surface sigma coordinate marine mode with mode splitting. J Mar Syst 4:365–370CrossRefGoogle Scholar
  13. Dukowicz JK, Smith RD (1994) Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J Geophys Res 99:7991–8014CrossRefGoogle Scholar
  14. Dukowicz JK, Smith RD, Malone RC (1993) A reformulation and implementation of the Bryan–Cox–Semtner ocean model on the connection machine. J Atmos Ocean Technol 10:195–208CrossRefGoogle Scholar
  15. Ford R, Pain CC, Piggott M, Goddard A, de Oliveira CR, Umpleby A (2004) A non-hydrostatic finite element model for three-dimensional stratified oceanic flows, part II: model validation. Mon Weather Rev 132:2832–2844CrossRefGoogle Scholar
  16. Giraldo FX, Perot JB, Fischer PF (2003) A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J Comput Phys 190:623–650CrossRefGoogle Scholar
  17. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modeling. Ocean Model 2:123–192CrossRefGoogle Scholar
  18. Hallberg R (1997) Stable split time stepping schemes for large-scale ocean modeling. J Comput Phys 135:54–56CrossRefGoogle Scholar
  19. Higdon RL, de Szoeke RA (1997) Barotropic–baroclinic time splitting for ocean circulation modeling. J Comput Phys 135:30–53CrossRefGoogle Scholar
  20. Huppert HE, Bryan K (1976) Topographically generated eddies. Deep-Sea Res 23:655–679Google Scholar
  21. Johnson ER (1984) Starting flow for an obstacle moving transversely in a rapidly rotating fluid. J Fluid Mech 149:71–88CrossRefGoogle Scholar
  22. Killworth PD, Stainforth D, Webb DJ, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348CrossRefGoogle Scholar
  23. Kubatko E, Dawson C, Westerink J (2008) Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J Comput Phys 227:9697–9710CrossRefGoogle Scholar
  24. Marshall JC, Adcroft AJ, Hill CN, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766CrossRefGoogle Scholar
  25. Verron J, Le Provost C (1985) A numerical study of quasi-geostrophic flow over isolated topography. J Fluid Mech 154:231–252CrossRefGoogle Scholar
  26. Wang Q (2007) The finite element ocean model and its aspect of vertical discretization. Ph.D. thesis, Bremen UniversityGoogle Scholar
  27. Wang Q, Danilov S, Schröter J (2008) Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J Geophys Res 113:C05015CrossRefGoogle Scholar
  28. White L, Legat V, Deleersnijder E (2008) Tracer conservation for three-dimensional, finite-element, free-surface, ocean modeling on moving prismatic meshes. Mon Weather Rev 136:420–442CrossRefGoogle Scholar
  29. Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN (1992) A standard test set for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys 102:211–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Richard Comblen
    • 1
    • 2
    • 3
  • Sébastien Blaise
    • 1
    • 2
    • 3
  • Vincent Legat
    • 1
    • 2
    • 3
    Email author
  • Jean-François Remacle
    • 1
    • 2
    • 3
  • Eric Deleersnijder
    • 1
    • 2
    • 3
    • 4
  • Jonathan Lambrechts
    • 1
    • 2
    • 3
  1. 1.Institute of Mechanics, Materials and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Georges Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Centre for Systems Engineering and Applied Mechanics (CESAME)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Earth and Life Institute (ELI), EulerUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations