Advertisement

Ocean Dynamics

, Volume 60, Issue 6, pp 1539–1558 | Cite as

A finite element sea ice model of the Canadian Arctic Archipelago

  • Arjen D. Terwisscha van Scheltinga
  • Paul G. Myers
  • Julie D. Pietrzak
Article

Abstract

The Canadian Arctic Archipelago (CAA) is a complex area formed by narrow straits and islands in the Arctic. It is an important pathway for freshwater and sea-ice transport from the Arctic Ocean to the Labrador Sea and ultimately to the Atlantic Ocean. The narrow straits are often crudely represented in coupled sea-ice–ocean models, leading to a misrepresentation of transports through these straits. Unstructured meshes are an alternative in modelling this complex region, since they are able to capture the complex geometry of the CAA. This provides higher resolution in the flow field and allows for more accurate transports (but not necessarily better modelling). In this paper, a finite element sea-ice model of the Arctic region is described and used to estimate the sea-ice fluxes through the CAA. The model is a dynamic–thermodynamic sea-ice model with elastic–viscous–plastic rheology and is coupled to a slab ocean, where the temperature and salinity are restored to climatology, with no velocities and surface elevation. The model is spun-up from 1973 to 1978 with NCEP/NARR reanalysis data. From 1979 to 2007, the model is forced by NCEP/DoE reanalysis data. The large scale sea-ice characteristics show good agreement with observations. The total sea-ice area agrees very well with observations and shows a sensitivity to the Arctic oscillation (AO). For 1998–2002, we find estimates for the sea-ice volume and area fluxes through Admunsen Gulf, McClure Strait and the Queen Elizabeth Islands that compare well with observation and are slightly better than estimates from other models. For Nares Strait, we find that the fluxes are much lower than observed, due to the missing effect of topographic steering on the atmospheric forcing fields. The 1979–2007 fluxes show large seasonal and interannual variability driven primarily by variability in the ice velocity field and a sensitivity to the AO and other large-scale atmospheric variability, which suggests that accurate atmospheric forcing might be crucial to modelling the CAA.

Keywords

Ocean modelling Unstructured meshes Sea ice Arctic Ocean Canadian Arctic Archipelago Freshwater flux 

Notes

Acknowledgements

The authors would like to thank the Alfred Wegener Institute, Bremerhaven, Germany—especially Jens Schröter—for making the FESOM code available for this study. The NCEP/NCAR reanalysis data and NCEP/DoE reanalysis 2 data were provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA. The sea-ice concentration data were provided by the NSIDC, Boulder, CO, USA. This study received funding support from Arcticnet.

References

  1. Aagaard K, Carmack E (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94:14,485–14,498Google Scholar
  2. Adcroft A, Marshall D (1998) How slippery are piecewise-constant coastlines in numerical ocean models? Tellus 50A:95–108Google Scholar
  3. Agnew T, Lambe A, Long D (2008) Estimating sea ice area flux across the Canadian Arctic Archipelago using enhanced AMSR-E. J Geophys Res 113:C10,011CrossRefGoogle Scholar
  4. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser, Boston, pp 163–202Google Scholar
  5. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2008) PETSc users manual. Tech. Rep. ANL-95/11—Revision 3.0.0. Argonne National Laboratory, ArgonneGoogle Scholar
  6. Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2009) PETSc Web page. http://www.mcs.anl.gov/petsc
  7. Becker E (1976) The finite element method in AIDJEX. AIDJEX Bull 13:144–157Google Scholar
  8. Bourke R, Garrett R (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Regions Sci Technol 13:259–280CrossRefGoogle Scholar
  9. Chen C, Beardsley R (2003) An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. JAtmOceTech 20:159–186Google Scholar
  10. Chen C, Beardsley R, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanogr 19:78–89Google Scholar
  11. Chen C, Gao G, Qi J, Proshuntinsky A, Beardsley R, Cowles G, Huang H (2009) A new high-resolution unstructured-grid, finite-volume Arctic Ocean model (AO-FVCOM): an application for tidal simulation. J Geophys Res 114:C08,017Google Scholar
  12. Comiso J (1999) Bootstrap sea ice concentrations from NIMBUS-7 SMMR and DMSP SSM/I. Digital media. National Snow and Ice Data Center, Boulder (updated 2008)Google Scholar
  13. Comiso J (2002) A rapidly declining Arctic perennial ice cover. Geophys Rev Lett 30:1956CrossRefGoogle Scholar
  14. Comiso J, Steffen K (2008) Introduction to special section on large-scale characteristics of the sea ice cover from AMSR-E and other satellite sensors. J Geophys Res 113:C02S1Google Scholar
  15. Danilov S, Kivman G, Schröter J (2004) A finite-element ocean model: principles and evaluation. Ocean Mod 6:125–150CrossRefGoogle Scholar
  16. Dickson R, Rudels B, Karcher M, Meincke J, Yashayaev I (2007) Current estimates of freshwater flux through Arctic and subarctic seas. Prog Oceanogr 73:210–230CrossRefGoogle Scholar
  17. Ebert E, Curry J (1993) An intermediate one-dimensional thermodynamic sea ice model for investigation ice–atmosphere interactions. J Geophys Res 98:10,085–10,109Google Scholar
  18. Fischer H (1995) Vergleichende Untersuchungen eines optimierten dynamischen–thermodynamischen Meereismodells mit Beobachtungen im Wendellmeer. In: Berichte zur Polarforschung, vol 116. Alfred-Wegener Institut (AWI), Bremerhaven, GermanyGoogle Scholar
  19. Flato G, Boer G (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198CrossRefGoogle Scholar
  20. Fowler C (2003) Polar pathfinder daily 25 km ease-grid sea ice motion vectors. Digital media. National Snow and Ice Data Center, Boulder (updated 2007)Google Scholar
  21. Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331CrossRefGoogle Scholar
  22. Goosse H, Fichefet T, Campin JM (1997) The effect of the flow through the Canadian Archipelago in global ice–ocean model. Geophys Res Lett 24:1507–1510CrossRefGoogle Scholar
  23. Hibler W (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  24. Hibler W (1980) Sea ice growth, drift and decay. In: Dynamics of snow and ice masses. Academic, New YorkGoogle Scholar
  25. Hunke E, Dukovicz J (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867CrossRefGoogle Scholar
  26. Jeffers S, Agnew T, De Abreu R, McCourt S (2001) Investigating the anomalous sea ice conditions in the Canadian High Arctic (Queen Elizabeth Islands) during the summer of 1998. Ann Glaciol 33:507–512CrossRefGoogle Scholar
  27. Johannessen O (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56A:328–341Google Scholar
  28. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetma A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  29. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo J, Potter G (2002) NCEP-DOE AMIP II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1642CrossRefGoogle Scholar
  30. Kliem N, Greenberg D (2003) Diagnostic simulations of the summer circulation in the Canadian Arctic Archipelago. Atmos Ocean 41:273–289CrossRefGoogle Scholar
  31. Kwok R (2005) Variability of Nares Strait ice flux. Geophys Res Lett 32:L24,502Google Scholar
  32. Kwok R (2006) Exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Geophys Res Lett 33:L16,501CrossRefGoogle Scholar
  33. Kwok R, Cunningham G, Pang S (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01,009Google Scholar
  34. Lambrechts J, Comblen R, Legat V, Geuzaine C, Remacle JF (2008) Multiscale mesh generation on the sphere. Ocean Dyn 58:461–473CrossRefGoogle Scholar
  35. Le Provost C (1986) On the use of finite element methods for ocean modelling. In: Advanced physical oceanography numerical modelling. Reidel, Dordrecht, pp 557–580Google Scholar
  36. Lefebvre W, Goosse H (2008) Analysis of the projected regional sea-ice changes in the Southern Ocean during the 21st century. Clim Dynam 30:59–76CrossRefGoogle Scholar
  37. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolaski E (2006) High resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46CrossRefGoogle Scholar
  38. Leppäranta M (1983) Growth model for black ice, snow ice and snow thickness in subarctic basins. Nord Hydrol 14:59–70Google Scholar
  39. LeRoux D, Lin C, Staniforth A (2000) A semi-implicit finite element shallow-water ocean model. Mon Weather Rev 128:1384–1401CrossRefGoogle Scholar
  40. Lietaer O, Fichefet T, Legat V (2008) The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model. Ocean Model 24:114–152Google Scholar
  41. Long D, Daum D (1999) Spatial resolution enhancement of SSM/I data. EEE Trans Geos Rem Sen 36:407–417CrossRefGoogle Scholar
  42. Melling H (2000) Exchanges of freshwater through the shallow straits of the North American Arctic, in the freshwater budget of the Arctic Ocean. Kluwer Academic, DordrechtGoogle Scholar
  43. Melling H (2002) Sea ice cover in the northern Canadian Arctic Archipelago. J Geophys Res 107:3181CrossRefGoogle Scholar
  44. Millero F (1978) Freezing point of sea water. In: Eight report of the Joint Panel of Oceanographic Tables and Standards, UNESCO Technical Papers in Marine Science, vol 28, pp 29–31Google Scholar
  45. Mukherji B (1973) Crack propagation in sea ice: a finite element approach. AIDJEX Bull 18:69–75Google Scholar
  46. Owens W, Lemke P (1990) Sensitivity studies with a sea ice-mixed layer-pycnocline model in the Weddell Sea. J Geophys Res 95:9527–9538CrossRefGoogle Scholar
  47. Parkinson C, Washington W (2007) A large-scale numerical model of sea ice. J Geophys Res 84:311–337CrossRefGoogle Scholar
  48. Pietrzak J, Deleersnijder E, Schröter J (2005) The second international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows. Ocean Model 10:1–252. Special issueCrossRefGoogle Scholar
  49. Rigor I, Wallace J, Colony R, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Climate 13:896–914CrossRefGoogle Scholar
  50. Rigor I, Wallace J, Colony R (2002) Response of sea ice to the Arctic oscillation. J Climate 15:2648–2663CrossRefGoogle Scholar
  51. Rollenhagen K, Timmermann R, Janjić T, Schröter J, Danilov S (2009) Assimilation of sea ice motion in a finite-element sea ice model. J Geophys Res 114:C05,007CrossRefGoogle Scholar
  52. Rothrock D, Yu Y, Maykut G (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472CrossRefGoogle Scholar
  53. Schulkes R, Morland L, Staroszczyk R (1998) A finite-element treatment of sea ice dynamics for different ice rheologies. Int Numer Anal Methods Geomesh 22:153–174CrossRefGoogle Scholar
  54. Semtner A (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  55. Serreze M, Barrett A, Slater A, RA W, Aagaard K, Lammers R, Steele M, Moritz R, Meredith M, Lee C (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11,010CrossRefGoogle Scholar
  56. Serreze M, Holland M, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1537CrossRefGoogle Scholar
  57. Sodhi D, Hiber W (1980) Nonsteady ice drift in the Strait of Belle Isle. In: Pritchard RS (ed) Sea ice processes and models. University of Washington Press, SeattleGoogle Scholar
  58. Sou T, Flato G (2009) Sea ice in the Canadian Arctic Archipelago: modeling the past (1950–2004) and the future (2041–60). J Climate 22:2181–2198CrossRefGoogle Scholar
  59. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Climate 14:2079–2087CrossRefGoogle Scholar
  60. Stroeve J, Serreze M, Fetterer F, Arbetter T, Meier W, Maslanik JKK (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Rev Let 32:L04,501Google Scholar
  61. Stroeve J, Holland M, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Rev Let 34:L09,501Google Scholar
  62. Thomson N, Sykes J, McKenna R (1988) Short-term ice motion modeling with applications to the Beaufort Sea. J Geophys Res 93:6819–6836CrossRefGoogle Scholar
  63. Timmermann H R Goosse, Madec G, Fichefet T, Ethe C, Dulière V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modelling 8:175–201CrossRefGoogle Scholar
  64. Timmermann R, Danilow S, Schröter J, Böning D, Sidorenko C, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model. Ocean Model 27:114–129CrossRefGoogle Scholar
  65. Tremblay LB, Mysak L (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27:2342–2360CrossRefGoogle Scholar
  66. Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Morales Maqueda MA (2009) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model 27:33–53CrossRefGoogle Scholar
  67. Wadhams P, Davis N (2000) Future evidence of ice thinning in the Arctic Ocean. Geophys Res Lett 27:3973–3975CrossRefGoogle Scholar
  68. Wang L, Ikeda M (2004) A Lagrangian description of sea ice dynamics using the finite element method. Ocean Model 7:21–38CrossRefGoogle Scholar
  69. Wessel P, Smith W (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res 101:8741–8743CrossRefGoogle Scholar
  70. White L, Deleersnijder E, Legat V (2008) A three-dimensional unstructured mesh finite element method shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin. Ocean Model 22:26–47CrossRefGoogle Scholar
  71. Wilchinsky A, Feltham D (2006) Modelling the rheology of sea ice as a collection of diamond-shaped floes. J Non-Newton Fluid Mech 138:22–32CrossRefGoogle Scholar
  72. Yakolev N (2003) Coupled model of ocean general circulation and sea ice evolution in the Arctic Ocean. Izv Atmos Ocean Phys 39:355–368Google Scholar
  73. Zhang J, Walsh J (2006) Towards a seasonally ice-covered Arctic Ocean: scenarios from the IPCC AR4 model simulations. J Climate 19:1730–1747CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Arjen D. Terwisscha van Scheltinga
    • 1
  • Paul G. Myers
    • 1
  • Julie D. Pietrzak
    • 2
  1. 1.Department of Atmospheric and Earth SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Faculteit CTIGTechnische Universiteit DelftDelftThe Netherlands

Personalised recommendations