Ocean Dynamics

, Volume 61, Issue 1, pp 69–88 | Cite as

Interactions between tides and other frequencies in the Indonesian seas

  • Robin RobertsonEmail author


Interactions of tidal constituents and the transfer of energy from the tidal frequencies to other frequencies are investigated using 3-D tidal simulations for the Indonesian seas, focusing on an area of active internal tides. Semidiurnal tides strongly affect diurnal tides; however, semidiurnal tides are essentially unaffected by diurnal tides. The semidiurnal and diurnal constituents interact with each other through non-linear interference, both destructive and constructive. Semidiurnal tides generate harmonics at nearly the diurnal frequency and higher vertical wavenumbers. In Ombai Strait, these harmonics are out of phase with the diurnal tides and interact destructively with the diurnal tides, effectively negating the diurnal response in some locations. However, this is not a general response, and interactions differ between locations. Energy is also transferred from both semidiurnal and diurnal tides to other frequencies across the spectrum, with more energy originating from semidiurnal tides. These energy transfers are not homogeneous, and the spectral responses differ between the Makassar and Ombai Straits, with the region east of Ombai showing a more active surface response compared to a more intense benthic response in Makassar. In deep water away from topography, velocity spectra generally follow the Garrett–Munk (GM) relation. However, in areas of internal tide generation, spectral density levels exceed GM levels, particularly between 4 and 8 cycles per day (cpd), indicating increased non-linear interactions and energy transfer through resonant interactions. The model indicates strong surface trapping of internal tides, with surface velocity spectra having significantly higher energy between 4 and 8 cpd even 100 km away from the prominent sill generating the internal tides.


Internal tides Indonesian Throughflow Internal waves Ombai strait 



Funding for this work has been provided by ONR through grant N00014-03-1-0423.


  1. Alford MH (2006) Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophy Res Lett 35:L15602. doi: 10.1029/2008GRL034720 CrossRefGoogle Scholar
  2. Alford MH, Gregg MC (2001) Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J Geophys Res 106:16947–16968CrossRefGoogle Scholar
  3. Alford MH, Gregg MC, Ilyas M (1999) Diapycnal mixing in the Banda Sea: results of the first microstructure measurements in the Indonesian Throughflow. Geophys Res Lett 26:741–2744CrossRefGoogle Scholar
  4. Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Tech 19:22,475–22,502CrossRefGoogle Scholar
  5. Ffield A, Gordon AL (1992) Vertical mixing in the Indonesian thermocline. J Phs Oceanog 22:186–195Google Scholar
  6. Ffield A, Gordon AL (1996) Tidal mixing signatures in the Indonesian seas. J Phs Oceanog 26:1924–1935CrossRefGoogle Scholar
  7. Flather RA, Proctor R (1983) Prediction of North Sea storm surge using numerical models: recent developments in the UK. In: Sundermann J, Lenz W (eds) North Sea dynamics. Springer, New York, pp 299–317Google Scholar
  8. Foreman MGG (1977) Manual for tidal height analysis and prediction. Pacific Marine Science report no. 77-10. Institute of Ocean Sciences, Patricia Bay, Sidney, p 58Google Scholar
  9. Foreman MGG (1978) Manual for tidal current analysis and prediction. Pacific Marine Science report no. 78-6. Institute of Ocean Sciences, Patricia Bay, Sidney, p 70Google Scholar
  10. Furuichi N, Hibiya T, Niwa T (2005) Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J Phs Oceanog 35:2104–2109CrossRefGoogle Scholar
  11. Garrett C (2003) Internal tides and ocean mixing. Science 301:1858–1859Google Scholar
  12. Garrett CJ, Munk WH (1975) Space–time scales of internal waves: a progress report. J Geophys Res 3:225–264Google Scholar
  13. Garrett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369CrossRefGoogle Scholar
  14. Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18:14–27Google Scholar
  15. Gordon A, Soesilo I, Brodjonegoro I, Ffield A, Jaya I, Molcard R, Sprintall J, Susanto RD, van Aken H, Wijffels S, Wirasantosa S (2006) The first 1.5 years of INSTANT data reveal the complexities of the Indonesian Throughflow. CLIVAR Exchanges 11:10–11Google Scholar
  16. Hatayama T (2004) Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. J Oceanog 60:569–585CrossRefGoogle Scholar
  17. Hatayama T, Awaji T, Akitomo K (1996) Tidal currents in the Indonesian seas and their effect on transport and mixing. J Geophys Res 101:12,353–12,373CrossRefGoogle Scholar
  18. Hibiya T, Nagasawa M, Niwa Y (2002) Non-linear energy transfer within the ocean internal wave spectra at mid and high latitudes. J Geophys Res 107. doi: 10.1029/2006JC001210
  19. Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geo Res Lett 28:811–814CrossRefGoogle Scholar
  20. Jochum M, Potemra J (2008) Sensitivity of tropical rainfall to Banda Sea diffusivity in the community climate system model. J Climate 21:6445–6454. doi: 10.1175.2008JCLI2230.1 CrossRefGoogle Scholar
  21. Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes. Academic, San Diego, p 940Google Scholar
  22. Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys Res Lett 34:L04604. doi: 10.1029/2006GL028405 CrossRefGoogle Scholar
  23. Koch-Larrouy A, Madec G, Iudicone D, Molcard R, Atmadipoera A (2008a) Physical processes contributing in the water mass transformation of the Indonesian Throughflow. Ocean Dynamics 58:275–288. doi: 10.1007/s10236-008-0154-5 CrossRefGoogle Scholar
  24. Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Water mass transformation along the Indonesian throughflow in an OGCM. Ocean Dynamics 58:289–309. doi: 10.1007/s10236-008-0155-4 CrossRefGoogle Scholar
  25. Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2009) Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics 34:891–904. doi: 10.1007/s00382-009-0642-4 CrossRefGoogle Scholar
  26. Kowalik Z, Proshutinsky AY (1995) Topographic enhancement of tidal motion in the western Barents Sea. J Geophys Res 100:2613–2637CrossRefGoogle Scholar
  27. Loder JW (1980) Topographic rectification of tidal currents on the sides of Georges Bank. J Phys Oceanogr 10:1399–1416CrossRefGoogle Scholar
  28. MacKinnon J A, Winters K B (2010) Tidal mixing hotspots governed by rapid parametric subharmonic instability. J Phys Ocean (in revision)Google Scholar
  29. Martinsen EA, Engedahl H (1987) Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coastal Eng 11:603–627CrossRefGoogle Scholar
  30. Mazzega P, Bergé M (1984) Ocean tides in the Asian semienclosed seas from TOPEX/POSEIDON. J Geophys Res 99:24867–24881CrossRefGoogle Scholar
  31. McComas CH (1977) Equilibrium mechanisms within the oceanic internal wave field. J Phys Oceanog 7:836–845CrossRefGoogle Scholar
  32. McComas CH, Müller P (1981) Equilibrium mechanisms within the oceanic internal wave field. J Phys Oceanog 11:970–986CrossRefGoogle Scholar
  33. Müller P, Holloway G, Henyey F, Pomphrey N (1986) Nonlinear interactions among internal gravity waves. Rev Geophysics 24:493–536CrossRefGoogle Scholar
  34. Munk W (1981) Internal Waves and small scale mixing processes. In: Warren B, Wunsch C (eds) Evolution of physical oceanography. MIT, Cambridge, pp 264–291Google Scholar
  35. Munk W, Wunsch C (1998) The moon and mixing: abyssal recipes II. Deep-Sea Res 45:1977–2010CrossRefGoogle Scholar
  36. Nicholls N (1989) Sea surface temperature and Australian winter rainfall. J Climate 2:965–973CrossRefGoogle Scholar
  37. Nicholls N (1995) All-India summer monsoon rainfall and sea surface temperatures around Northern Australia and Indonesia. J Climate 8:1463–1467CrossRefGoogle Scholar
  38. Niwa Y, Hibiya T (2001) Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J Geophys Res 106:22441–22449CrossRefGoogle Scholar
  39. Ray RD, Egbert GD, Erofeeva S (2005) Brief overview of tides in the Indonesian seas. Oceanography 18:74–79Google Scholar
  40. Robertson R (2005) Barotropic and baroclinic tides in the Weddell Sea. Antarct Sci 17:461–474CrossRefGoogle Scholar
  41. Robertson R (2006) Modeling internal tides over Fieberling Guyot: resolution, parameterization, performance. Ocean Dynamics 56:430–444. doi: 10.1007/s10236-006-0062-5 CrossRefGoogle Scholar
  42. Robertson R (2010) Tidal currents and mixing at the INSTANT mooring locations. Dynam Oceans Atmos 50:331–373CrossRefGoogle Scholar
  43. Robertson R, Ffield A (2005) M2 baroclinic tides in the Indonesian seas. Oceanography 18:62–73Google Scholar
  44. Robertson R, Ffield A (2008) Baroclinic tides in the Indonesian seas: tidal fields and comparisons to observations. J Geophys Res 113:C07031. doi: 10.1029/2007JC004677 CrossRefGoogle Scholar
  45. Robertson R, Beckmann A, Hellmer H (2003) Tidal dynamics in the Ross Sea. Antarct Sci 15:41–46Google Scholar
  46. Robinson IS (1981) Tidal vorticity and residual circulation. Deep-Sea Res 28A:195–212CrossRefGoogle Scholar
  47. Schiller A (2004) Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Model 6:31–49Google Scholar
  48. Schroyer EL, Moum JN, Nash JD (2010) Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Proc Geophys 17:345–360. doi: 10.5194/npg-17-345-2010 CrossRefGoogle Scholar
  49. Shchepetkin AF, McWilliams JC (2003) A method for computing horizontal pressure gradient force in an ocean model with non-aligned vertical coordinates. J Geophys Res 108:35.1–35.34. doi: 10:1029/2001JC001047 CrossRefGoogle Scholar
  50. Simmons HL (2008) Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Model 21:126–138. doi: 10.1012/j.ocemod.2008.01.002 Google Scholar
  51. Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep Sea Res II 51:3043–3068. doi: 10.1016/j.dsr2.2004.09.015 CrossRefGoogle Scholar
  52. Smith WH, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  53. Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait throughflow. J Geophys Res 110:C01005. doi: 10.1029/2004JC002425 CrossRefGoogle Scholar
  54. Susanto RD, Gordon AL, Sprintall J, Herunadi B (2000) Intraseasonal variability and tides in Makassar Strait. Geophy Res Lett 27:1499–1502CrossRefGoogle Scholar
  55. Sutherland BR (2006) Internal wave instability: wave–wave versus wave-induced mean flow interactions. Phys Fluids 18:974107CrossRefGoogle Scholar
  56. Tennenkes H, Lumley JL (1972) A first course in turbulence. MIT, Cambridge, 300 ppGoogle Scholar
  57. Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction. Elsevier, Oxford, p 391Google Scholar
  58. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence. J Mar Res 61:235–265CrossRefGoogle Scholar
  59. Van Aken H, Punjanan MJ, Saimima S (1988) Physical aspects of the flushing of the east Indonesian basins. Netherlands J Sea Res 22:315–339CrossRefGoogle Scholar
  60. Warner JC, Sherwood CR, Arango HG, Butman B, Signell RP (2005) Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Model 8:81–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.University of New South Wales @ADFA (Australian Defence Force Academy)CanberraAustralia

Personalised recommendations