Ocean Dynamics

, Volume 60, Issue 5, pp 1193–1204 | Cite as

Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass

  • William Llovel
  • Stéphanie Guinehut
  • Anny Cazenave


In this study, we have estimated the different sea level components (observed sea level from satellite altimetry, steric sea level from in situ hydrography—including Argo profiling floats, and ocean mass from Gravity Recovery and Climate Experiment; GRACE), in terms of regional and interannual variability, over 2002–2009. We compute the steric sea level using different temperature (and salinity) data sets processed by different groups (SCRIPPS, CLS, IPRC, and NOAA) and first focus on the regional variability in steric and altimetry-based sea level. In addition to El Nino–La Nina signatures, the observed and steric sea level data show clear impact of three successive Indian Ocean Dipoles in 2006, 2007, and 2008 in the Indian Ocean. We next study the spatial trend patterns in ocean mass signal by comparing GRACE observations over the oceans with observed minus steric sea level. While in some regions, reasonably good agreement is observed, discrepancy is noticed in some others due to still large regional trend errors in Argo and GRACE data, as well as to a possible (unknown) deep ocean contribution. In terms of global mean, interannual variability in altimetry-based minus steric sea level and GRACE-based ocean mass appear significantly correlated. However, large differences are reported when short-term trends are estimated (using both GRACE and Argo data). This prevents us to draw any clear conclusion on the sea level budget over the recent years from the comparison between altimetry-based, steric sea level, and GRACE-based ocean mass trends, nor does it not allow us to constrain the Glacial Isostatic Adjustment correction to apply to GRACE-based ocean mass term using this observational approach.


Sea level rise Satellite altimetry GRACE Argo Steric sea level Ocean mass 



We thank 2 anonymous reviewers for very useful comments. William Llovel PhD grant is supported by CNRS and Region Midi- Pyrenees. GRACE data were processed by D. P. Chambers, supported by the NASA Earth Science REASoN GRACE Project, and are available at http://grace.jpl.nasa.gov. The Argo data were collected and made freely available by the international Argo project (http://www.argo.ucsd.edu). The altimeter products were produced by SSALTO/DUACS and distributed by AVISO with support from CNES.


  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201CrossRefGoogle Scholar
  2. Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32:L12602. doi: 10.1029/2005GL023112 CrossRefGoogle Scholar
  3. Behera SK, Luo JJ, Masson S, Rao SA, Sakum H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Climate 19(9):1688–1705CrossRefGoogle Scholar
  4. Behera SK, Luo J-J, Yamagata T (2008) Unusual IOD event of 2007. Geophys Res Lett 35:L14S11. doi: 10.1029/2008GL034122 CrossRefGoogle Scholar
  5. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley L, Unnikrishnan A (2007) Observations: oceanic climate and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  6. Cai W, Pan A, Roemmich D, Cowan T, Guo X (2009) Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophys Res Lett 36:L08701. doi: 10.1029/2008GL037038 CrossRefGoogle Scholar
  7. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173. doi: 10.1146/annurev-marine-120308-081105 CrossRefGoogle Scholar
  8. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65:83–88CrossRefGoogle Scholar
  9. Chambers DP (2006) Evaluation of new GRACE time–variable gravity data over the ocean. Geophys Res Lett 33(17):LI7603. doi: 10.1029/2006GL027296 Google Scholar
  10. Chambers DP, Willis JK (2008) Analysis of large-scale ocean bottom pressure variability in the North Pacific. J Geophys Res 113:C11003. doi: 10.1029/2008JC004930 CrossRefGoogle Scholar
  11. Chambers DP, Whar J, Tamisiea ME, Nerem RS (2010) Ocean mass from GRACE and glacial isostatic adjustment (in press)Google Scholar
  12. Guinehut S, Coatanoan C, Dhomps AL, Le Traon PY, Larnicol G (2009) On the use of satellite altimeter data in argo quality control. Journal of Atmospheric and Oceanic Technology 26(2):395–402. doi: 10.1175/2008JTECHO648.1 CrossRefGoogle Scholar
  13. Han SC, Shum CK, Bevis M, Ji C, Kuo CY (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra–Andaman earthquake. Science 313(5787):658–662CrossRefGoogle Scholar
  14. Horii T, Hase H, Ueki I, Masumoto Y (2008) Oceanic precondition and evolution of the 2006 Indian Ocean Dipole. Geophys Res Lett 35(3):L03607. doi: 10.1029/2007GL032464 CrossRefGoogle Scholar
  15. Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. doi: 10.1029/2008GL036010 CrossRefGoogle Scholar
  16. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi: 10.1029/2008GL037155 CrossRefGoogle Scholar
  17. Lombard A, Cazenave A, Le Traon PY, Ishii M (2005) Contribution of thermal expansion to present-day sea-level change revisited. Glob Planet Change 47(1):1–16. doi: 10.1016/j.gloplacha.2004.11.016 CrossRefGoogle Scholar
  18. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/4A degrees global ocean/sea-ice hindcast. Ocean Dyn 59(3):433–449CrossRefGoogle Scholar
  19. Luo JJ, Behera S, Masumoto Y, Sakuma H (2008) Successful prediction of the consecutive IOD in 2006 and 2007. Geophys Res Lett 35(4):L14S02. doi: 10.1029/2007GL032793 CrossRefGoogle Scholar
  20. Lyman JM, Godd SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi: 10.1038/nature09043 CrossRefGoogle Scholar
  21. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2(7):471–478. doi: 10.1038/ngeo544 CrossRefGoogle Scholar
  22. Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171(2):497–508CrossRefGoogle Scholar
  23. Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Int 181:762–768. doi: 10.1111/j.1365-246X.2010.04508x Google Scholar
  24. Peltier WR (2009) Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quatern Sci Rev 28:17–18CrossRefGoogle Scholar
  25. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Developments in Atmospheric Science, vol. 17. Elsevier. pp 425Google Scholar
  26. Roemmich D, Gilson J (2009) The 2004–2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from the Argo program. Prog Oceanogr 82:81–100CrossRefGoogle Scholar
  27. Saji NH, Goswami BN, Inayachandran BN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  28. Schott FA, Shang-Ping X, McCreary P (2009) Indian ocean circulation and climate variability. Rev Geophys 47:RG1002CrossRefGoogle Scholar
  29. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113(06):C06022CrossRefGoogle Scholar
  30. Swenson S, Wahr J (2002) Methods for inferring regional surface mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time–variable gravity. J Geophys Res 107(B9):2193. doi: 10.1029/2001JB000576 CrossRefGoogle Scholar
  31. Toumazou V, Cretaux JF (2001) Using a Lanczos eigensolver in the computation of empirical orthogonal functions. Mon Weather Rev 129:1243–1250CrossRefGoogle Scholar
  32. Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous conditions in 2006. Geophys Res Lett 34(5):L15602CrossRefGoogle Scholar
  33. von Schuckmann K, Gaillard F, Le Traon PY (2009) Global hydrographic variability patterns during 2003–2008. J Geophys Res. doi:10.1029/2008JC005237
  34. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time–variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar
  35. Wong APS, et al. (2008) Argo quality control manual, version 2.31. Ar-um-04-01, pp 33Google Scholar
  36. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113:C06015. doi: 10.1029/2007JC004517 CrossRefGoogle Scholar
  37. Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim. doi: 10.1175/2007JCLI1840.1 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • William Llovel
    • 1
  • Stéphanie Guinehut
    • 2
  • Anny Cazenave
    • 1
  1. 1.LEGOS/OMPToulouseFrance
  2. 2.CLSRamonville St AgneFrance

Personalised recommendations