Ocean Dynamics

, Volume 60, Issue 5, pp 1307–1318 | Cite as

On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data with an inundation model of Cook Inlet, Alaska

  • Tal EzerEmail author
  • Hua Liu


A new method of integrating satellite remote sensing data and inundation models allows the mapping of extensive tidal mudflats in a sub-Arctic estuary, Cook Inlet (CI), Alaska. The rapid movement of the shorelines in CI due to the large tides (~10 m range) is detected from a series of Landsat imagery taken at different tidal stages, whereas GIS tools are used to identify the water coverage in each satellite image and to extract the coordinates of the shoreline. Then, water level along the shoreline for each satellite image is calculated from the observed water level at Anchorage and the statistics of an inundation model. Several applications of the analysis are demonstrated: 1. studying the dynamics of a tidal bore and the flood/ebb processes, 2. identifying climatic changes in mudflats morphology, and 3. mapping previously unobserved mudflat topographies in order to improve inundation models. The method can be used in other regions to evaluate models and improve predictions of catastrophic floods such as those associated with hurricane storm surges and tsunamis.


Remote sensing Ocean modeling Alaska Tides 


  1. Bales J, Wagner CR, Tighe KC, Terziotti S (2007) LiDAR-derived flood-inundation maps for real-time flood mapping applications, Tar River, North Carolina. U.S. Geological Survey Scientific Investigations Report 2007-5032.Google Scholar
  2. Ezer T, Liu H (2009) Combining remote sensing data and inundation modeling to map tidal mudflat regions and improve flood predictions: a proof of concept demonstration in Cook Inlet, Alaska. Geophys Res Lett 36:L04605. doi: 10.29/2008GL036873 CrossRefGoogle Scholar
  3. Ezer T, Hobbs R, Oey L-Y (2008) On the movement of beluga whales in Cook Inlet, Alaska: simulations of tidal and environmental impacts using a hydrodynamic inundation model. Oceanography 21(4):186–195Google Scholar
  4. Hu C, Muller-Karger FE, Taylor C, Carder KL, Kelble C, Johns E, Heil CA (2005) Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Rem Sens Env 97(3):311–321CrossRefGoogle Scholar
  5. Liu H, Ezer T (2009) Integration of Landsat imagery and an inundation model in flood assessment and predictions: a case study in Cook Inlet, Alaska, The 17th International Conference on Geoinformatics, Fairfax, VA, August 12–14. IEEE Xplore Paper 209:1–5Google Scholar
  6. Kowalik Z, Knight W, Logan T, Whitmore P (2006) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:1–15Google Scholar
  7. Oey L-Y (2005) A wetting and drying scheme for POM. Ocean Model 9:133–150CrossRefGoogle Scholar
  8. Oey L-Y (2006) An OGCM with movable land-sea boundaries. Ocean Model 13:176–195CrossRefGoogle Scholar
  9. Oey L-Y, Ezer T, Hu C, Muller-Karger FE (2007) Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: numerical modeling and satellite observations. Ocean Dyn 57:205–221. doi: 10.1007/s10236-007-0103-8 CrossRefGoogle Scholar
  10. Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota's 10,000 lakes. Remote Sens Envir 112(11):4086–4097Google Scholar
  11. Palandro PA, Andréfouët S, Hu C, Hallock P, Müller-Karger FE, Dustan P, Callahan MK, Kranenburg C, Beaver CR (2008) Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984–2002). Rem Sens Env 112(8):3388–3399CrossRefGoogle Scholar
  12. Saramul S, Ezer T (2010) Tidal-driven dynamics and mixing processes in a coastal ocean model with wetting and drying. Ocean Dyn 60(2):461–478. doi: 10.1007/s10236-009-0250-1 CrossRefGoogle Scholar
  13. Stroppiana D, Pinnock S, Pereira JMC, Gregoire JM (2002) Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia. Rem Sens Env 82:21–37CrossRefGoogle Scholar
  14. Travis J (2005) Hurricane Katrina: scientists' fears come true as hurricane floods New Orleans. Science 309(5741):1656–1659CrossRefGoogle Scholar
  15. Vogelmann JE, Tolk B, Zhu Z (2009) Monitoring forest changes in the southwestern United States using multi-temporal Landsat data. Rem Sens Env 113(8):1739–1748CrossRefGoogle Scholar
  16. Vos DJ, Shelden KEW (2005) Unusual mortality in the depleted Cook Inlet Beluga (Delphinapterus leucas) population. North West Nat 86(2):59–65CrossRefGoogle Scholar
  17. Xue H, Du Y (2010) Implementation of a wetting-and-drying model in simulating the Kennebec–Androscoggin plume and the circulation in Casco Bay. Ocean Dyn 60(2):341–357CrossRefGoogle Scholar
  18. Zhou G (2009) Coastal 3-D morphological change analysis using LiDAR series data: a case study of Assateague Island National Seashore. J Coast Res 25(2):435–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Center for Coastal Physical OceanographyOld Dominion UniversityNorfolkUSA
  2. 2.Department of Political Science and GeographyOld Dominion UniversityNorfolkUSA

Personalised recommendations