Ocean Dynamics

, Volume 60, Issue 3, pp 743–757 | Cite as

The cyclonic circulation in the Australian–Antarctic basin simulated by an eddy-resolving general circulation model

  • Shigeru AokiEmail author
  • Yoshikazu Sasai
  • Hideharu Sasaki
  • Humio Mitsudera
  • Guy D. Williams


Flow structure in the Australian–Antarctic basin is investigated using an eddy-resolving general ocean circulation model and validated with iceberg and middepth float trajectories. A cyclonic circulation system between the Antarctic Circumpolar Current and Antarctic Slope Current consists of a large-scale gyre in the west (80–110° E) and a series of eddies in the east (120–150° E). The western gyre has an annual mean westward transport of 22 Sv in the southern limb. Extending west through the Princess Elizabeth Trough, 5 Sv of the gyre recirculates off Prydz Bay and joins the western boundary current off the Kerguelen Plateau. Iceberg trajectories from QuickScat and ERS-1/2 support this recirculation and the overall structure of the Antarctic Slope Current against isobath in the model. Argo float trajectories also reveal a consistent structure of the deep westward slope current. This study indicates the presence of a large cyclonic circulation in this basin, which is comparable to the Weddell and Ross gyres.


Cyclonic gyre Australian–Antarctic basin Transport OFES Iceberg drift Argo float 



Discussion with Masaaki Wakatsuchi and Keiichiro Ohshima on cyclonic eddy structure was invaluable. Yasu Fukamachi provided useful information on the mooring results. Andrew Meijers did extensive analysis of LADCP observations of the BROKE-West cruise and provided the data. The OFES simulation was conducted on the Earth Simulator. Argo data were collected and made freely available by the Coriolis project ( and Japan Argo project ( This work was supported by Grant-in-Aid for Scientific Research (15710001 and 17340138) of the MEXT of the Japanese Government.


  1. Aoki S (2003) Seasonal and spatial variations of iceberg drift off Dronning Maud Land, Antarctica, detected by satellite scatterometers. J Oceanogr 59(5):629–635CrossRefGoogle Scholar
  2. Aoki S, Fukai D, Hirawake T, Ushio S, Rintoul SR, Hasumoto H, Ishimaru T, Sasaki H, Kagimoto T, Sasai Y, Mitsudera H (2007) A series of cyclonic eddies in the Antarctic Divergence off Adélie Coast. J Geophys Res 112:C05019 doi: 10.1029/2006JC003712 CrossRefGoogle Scholar
  3. Aoki S, Fujii N, Ushio S, Yoshikawa Y, Watanabe S, Mizuta G, Fukamachi Y, Wakatsuchi M (2008) Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Current southeast of the Kerguelen Plateau. J Geophys Res 113:C08038. doi: 10.1029/2007JC004627 CrossRefGoogle Scholar
  4. Beckmann A, Hellmer H, Timmermann R (1999) A numerical model of the Weddell Sea: large-scale circulation and water mass distribution. J Geophys Res 104:23,375–23,391CrossRefGoogle Scholar
  5. Bindoff NL, Rosenberg MA, Warner MJ (2000) On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150 ° E. Deep-Sea Res II 47:2299–2326CrossRefGoogle Scholar
  6. Boyer TP, Levitus S, Antonov JI, Conkright ME, O’Brien T, Stephens C (1998) World Ocean Atlas 1998 Vol. 5: salinity of the Pacific ocean, NOAA Atlas NESDIS 31. U.S. Government Printing Office, Washington, D.C.Google Scholar
  7. Deacon GER (1979) The Weddell Gyre. Deep-Sea Res 26A:981–995CrossRefGoogle Scholar
  8. Donohue K, Hufford GE, McCartney MS (1999) Sources and transport of the deep western boundary current east of the Kerguelen Plateau. Geophys Res Lett 26(7):851–854CrossRefGoogle Scholar
  9. Fukamachi Y, Wakatsuchi M, Taira K, Kitagawa S, Ushio S, Takahashi A, Oikawa K, Furukawa T, Yoritaka H, Fukuchi M, Yamanouchi T (2000) Seasonal variability of bottom water properties off Adélie Land, Antarctica. J Geophys Res 105:6531–6540CrossRefGoogle Scholar
  10. Gladstone RM, Bigg GR, Nicholls KW (2001) Iceberg trajectory modeling and meltwater injection in the Southern Ocean. J Geophys Res 106:19,903–19,915Google Scholar
  11. Gordon AL, Tchernia P (1972) Waters of the continental margin off Adélie Coast, Antarctica. In: Hayes DE (ed) Antarctic Oceanology II: the Australian–New Zealand sector. Antarct. research series, vol 19. AGU, Washington, D.C., pp 59–69Google Scholar
  12. Gouretske V (1999) The large-scale thermohaline structure of the Ross Sea. In: Spezie G, Manzella GMR (eds) Oceanography of the Ross Sea Antarctica. Springer, Mirano, pp 77–100Google Scholar
  13. Gouretske V, Danilov AI (1993) Weddell Gyre: structure of the eastern boundary. Deep-Sea Res I 40:561–582CrossRefGoogle Scholar
  14. Heywood KJ, Sparrow MD, Brown J, Dickson RD (1999) Frontal structure and Antarctic bottom water flow through the Princess Elizabeth Trough, Antarctica. Deep-Sea Res I 46:1181–1200CrossRefGoogle Scholar
  15. Hirawake T, Kudoh S, Aoki S, Rintoul SR (2003) Eddies revealed by SeaWiFS ocean color images in the Antarctic Divergence zone near 140° E. Geophys Res Lett 30(9):1458. doi: 10.1029/2003GL016996 CrossRefGoogle Scholar
  16. Jacobs SS (1991) On the nature and significance of the Antarctic Slope Front. Mar Chem 35:9–24CrossRefGoogle Scholar
  17. Kimura N (2004) Sea ice motion in response to surface wind and ocean current in the Southern Ocean. J Metelorol Soc Jpn 82:1223–1231CrossRefGoogle Scholar
  18. Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the Prime Meridian. Deep-Sea Res II 52:513–528CrossRefGoogle Scholar
  19. Long DG, Drinkwater MR (1994) Greenland ice sheet surface properties observed by the Seasat-A scatterometer at enhanced resolution. J Glaciol 32:213–220Google Scholar
  20. Long DG, Drinkwater MR (1999) Cryosphere applications of NSCAT data. IEEE Trans Geosci Remote Sens 37:1671–1684CrossRefGoogle Scholar
  21. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the earth simulator). J Earth Simul 1:35–56Google Scholar
  22. McCartney MS, Donohue KA (2007) A deep cyclonic gyre in the Australian–Antarctic basin. Prog Oceanogr 75:675–750. doi: 10.1016/j.pocean.2007.02.008 CrossRefGoogle Scholar
  23. Meijers A, Klocker A, Bindoff NL, Williams GD, Marsland SJ (2010) The large-scale circulation off the east Antarctic Coast (30–80°E). Deep-Sea Res II. doi: 10.1016/j.dsr2.2009.04.019 Google Scholar
  24. Middleton JF, Cirano M (2002) A northern boundary current along Australia’s southern shelves: the Flinders current. J Geophys Res 107:12.1–12.11. doi: 10.1029/2001JC000701 CrossRefGoogle Scholar
  25. Ohshima KI, Takizawa T, Ushio S, Kawamura T (1996) Seasonal variations of the Antarctic coastal ocean in the vicinity of Lützow-Holm Bay. J Geophys Res 101:20,617–20,628CrossRefGoogle Scholar
  26. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res 42:641–673CrossRefGoogle Scholar
  27. Pacanowski RC, Griffies SM (2000) MOM 3.0 Manual, 680pp. Geophys. Fluid Dyn. Lab., Natl. Atmos. Admin., PrincetonGoogle Scholar
  28. Park YH, Gamberoni L (1995) Large-scale circulation and its variability in the south Indian Ocean from TOPEX/POSEIDON altimetry. J Geophys Res 100:24,911–24,924Google Scholar
  29. Remund QP, Long DG (1999) Sea ice extent mapping using Ku-band scatterometer data. J Geophys Res 104:11515–11527CrossRefGoogle Scholar
  30. Rintoul SR (1998) On the origin and influence of Adélie Land bottom water. In: Jacobs SS, Weiss R (eds) Ocean, ice and atmosphere: interactions at Antarctic Continental Margin. Antarc. Res. Ser., vol 75. AGU, Washington, D.C., pp  151–171Google Scholar
  31. Rintoul SR, Bullister JL (1999) A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res I 46:1417–1454CrossRefGoogle Scholar
  32. Rintoul SR, Hughes CW, Olbers D (2001) The Antarctic Circumpolar Current system. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate, vol 77. Academic, San Diego, pp 271–302CrossRefGoogle Scholar
  33. Rintoul SR, Sokolov S, Massom RA (2008) Rapid development and persistence of a massive Antarctic sea ice tongue. J Geophys Res 113:C07045. doi: 10.1029/2007JC004541 CrossRefGoogle Scholar
  34. Rodehacke CB, Hellmer H, Beckmann A, Roether W (2007) Formation and spreading of Antarctic deep and bottom waters inferred from a chlorofluorocarbon CFC) simulation. J Geophys Res 112:C09001. doi: 10.1029/2006JC003884 CrossRefGoogle Scholar
  35. Smith NR, Zhaoqian D, Kerry KR, Wright S (1984) Water masses and circulation in the region of Prydz Bay, Antarctica. Deep-Sea Res 31:1121–1147CrossRefGoogle Scholar
  36. Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140 ° E. J Mar Syst 37:151–184CrossRefGoogle Scholar
  37. Tchernia P, Jeannin PF (1980) Observations on the Antarctic East Wind Drift using tabular icebergs tracked by satellite Nimbus F (1975–1977). Deep-Sea Res 27:467–474CrossRefGoogle Scholar
  38. Thompson KR, Lazier JRN, Taylor B (1986) Wind-forced changes in Labrador current transport. J Geophys Res 91:14261–14268CrossRefGoogle Scholar
  39. Thorpe SE, Murphy EJ, Watkins JL (2007) Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport. Deep-Sea Res I 54:792–810. doi: 10.1016/j.dsr.2007.01.008 CrossRefGoogle Scholar
  40. Trenberth KE, Olson JG, Large WG (1989) A global ocean wind stress climatology based on ECMWF analyses, number NCAR/TN-338+STR, AugustGoogle Scholar
  41. Wakatsuchi M, Ohshima KI, Hishida M, Naganobu M (1994) Observations of a street of cyclonic eddies in the Indian Ocean sector of the Antarctic Divergence. J Geophys Res 99:20417–20426CrossRefGoogle Scholar
  42. Wang Z, Meredith MP (2008) Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys Res Lett 35:L14608. doi: 10.1029/2008GL034344 CrossRefGoogle Scholar
  43. Webb DJ, de Cuevas BA, Coward AC (1998) The first main run of the OCCAM global ocean model. Internal Document 34. Southampton Oceanography Centre, SouthamptonGoogle Scholar
  44. Whitworth III T (1983) Monitoring the net transport of the Antarctic Circumpolar Current at Drake Passage. J Phys Oceanogr 13:2045–2057CrossRefGoogle Scholar
  45. Whitworth III T, Peterson RG (1985) The volume transport of the Antarctic Circumpolar Current from three-year bottom pressure measurements. J Phys Oceanogr 15:810–816CrossRefGoogle Scholar
  46. Whitworth III T, Nowlin Jr WD (1987) Water masses and currents of the Southern Ocean at Greenwich Meridian. J Geophys Res 92:6462–6476CrossRefGoogle Scholar
  47. Whitworth III T, Orsi AH, Kim SJ, Nowlin Jr WD, Locarnini RA (1998) Water masses and mixing near the Antarctic Slope Front. In: Jacobs SS, Weiss R (eds) Ocean, ice and atmosphere: interactions at Antarctic Continental Margin. Antarc. Res. Ser., vol 75. AGU, Washington, D.C., pp  151–171Google Scholar
  48. Williams GD, Nicol S, Bindoff NL, Aoki S, Meijers A, Marsland SJ, Klocker A, Iijima Y (2010) Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30–80° E). Deep-Sea Res II. doi: 10.1016/j.dsr2.2009.04.020 Google Scholar
  49. Zeverev AA (1963) Currents in the Indian sector of the Antarctic. Tr Sov Antarkt Eksped 17:144–155Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shigeru Aoki
    • 1
    Email author
  • Yoshikazu Sasai
    • 2
  • Hideharu Sasaki
    • 3
  • Humio Mitsudera
    • 1
  • Guy D. Williams
    • 1
  1. 1.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  2. 2.Frontier Research Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  3. 3.Earth Simulator CenterJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations