Ocean Dynamics

, Volume 59, Issue 2, pp 333–350 | Cite as

Trace metal dynamics in the water column and pore waters in a temperate tidal system: response to the fate of algae-derived organic matter

  • Nicole KowalskiEmail author
  • Olaf Dellwig
  • Melanie Beck
  • Maik Grunwald
  • Sibylle Fischer
  • Maike Piepho
  • Thomas Riedel
  • Holger Freund
  • Hans-Jürgen Brumsack
  • Michael E. Böttcher


Tidal and seasonal behaviour of the redox-sensitive trace metals Mn, Fe, Mo, U, and V have been investigated in the open-water column and shallow pore waters of the backbarrier tidal flats of the island of Spiekeroog (Southern North Sea) in 2002 and 2007. The purpose was to study the response of trace metal cycles on algae blooms, which are assumed to cause significant changes in the redox state of the entire ecosystem. Trace metal data were complemented by measurements of nutrients and enumeration of algae cells in 2007. Generally, Mn and V show a tidal cyclicity in the water column with maximum values during low tide which is most pronounced in summer due to elevated microbial activity in the sediments. Mo and U behave almost conservatively throughout the year with slightly increasing levels towards high tide. Exceptions are observed for both metals after summer algae blooms. Thus, the seasonal behaviour of the trace metals appear to be significantly influenced by productivity in the water column as the occurrence of algae blooms is associated with an intense release of organic matter (e.g. transparent exopolymer particles, TEP) thereby forming larger organic-rich aggregates. Along with elevated temperatures in summer, the deposition of such aggregates favours microbial activity within the surface sediments and release of DOC, nutrients and trace metals (Mn, Mo and V) during the degradation of the aggregates. Additionally, pronounced reducing conditions lead to the reduction of Mn(IV)-oxides and Fe(III)-(oxihydr)oxides, thereby releasing formerly scavenged compounds as V and phosphate. Therefore, pore-water profiles show significant enrichments in trace metals especially from July to September. Finally, the trace metals are released to the open water column via draining pore waters (esp. Mo, Mn, and V) and/or fixed in the sediment as sulphides (Fe, Mo) and bound to organic matter (U). Non-conservative behaviour of Mo in oxygenated seawater, first observed in the investigation area by Dellwig et al. (Geochim Cosmochim Acta 71:2745–2761, 2007a), was shown to be a recurrent phenomenon which is closely coupled to bacterial activity after the breakdown of algae blooms. In addition to the postulated fixation of Mo in oxygen-depleted micro-zones of the aggregates or by freshly formed organic matter, a direct removal of Mo from the water column by reduced sediment surfaces may also play an important role.


Redox-sensitive trace metals Algae Water column Pore waters Wadden Sea Southern North Sea 



The authors would like to thank Malte Groh (Argonauta, Wildeshausen), Helmo Nicolai, and Waldemar Siewert (ICBM-Terramare, Wilhelmshaven) for their assistance during the sampling campaigns. We thank Conny Lenz and Vera Winde (IOW, Rostock) for their support during sampling and laboratory work. Furthermore, we would like to thank Thomas Badewien (University of Oldenburg) for providing salinity data of the monitoring station. This manuscript significantly benefited from comments and constructive suggestions by Tim Lyons and one anonymous reviewer. We wish to thank Jürgen Rullkötter for coordinating the research group and for editorial support.

The study is integrated in the Research Group “BioGeoChemistry of Tidal Flats” (FOR 432/2) and is funded by the Deutsche Forschungsgemeinschaft (BO 1584/4, BR 775/14-4) and Leibniz Institute for Baltic Sea Research.


  1. Algeo TJ (2006) Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21:PA1016. doi: 10.1029/2004PA001112 CrossRefGoogle Scholar
  2. Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn (in press).Google Scholar
  3. Anbar AD, Holland HD (1992) The photochemistry of manganese and the origin of banded iron formation. Geochim Cosmochim Acta 56:2595–2603. doi: 10.1016/0016-7037(92) 90346-K CrossRefGoogle Scholar
  4. Balistrieri L, Brewer PG, Murray JW (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res 28A:101–121. doi: 10.1016/0198-0149(81) 90085-6 CrossRefGoogle Scholar
  5. Barling J, Anbar AD (2003) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217(3–4):315–329. doi: 10.1016/S0012-821X(03) 00608-3 Google Scholar
  6. Beck M, Dellwig O, Kolditz K, Freund H, Liebezeit G, Schnetger B, Brumsack H-J (2007) In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144Google Scholar
  7. Beck M, Dellwig O, Schnetger B, Brumsack H-J (2008a) Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochim Cosmochim Acta 72:2822–2840. doi: 10.1016/j.gca.2008.04.013 CrossRefGoogle Scholar
  8. Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack H-J (2008b) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments. Estuar Coast Shelf Sci 79(2):307–316. doi: 10.1016/j.ecss.2008.04.007 CrossRefGoogle Scholar
  9. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615. doi: 10.1016/0016-7037(84) 90089-9 CrossRefGoogle Scholar
  10. Berrang PG, Grill EV (1974) The effect of manganese oxide scavenging on molybdenum in Saanich Inlet, British Columbia. Mar Chem 2:125–148. doi: 10.1016/0304-4203(74) 90033-4 CrossRefGoogle Scholar
  11. Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76Google Scholar
  12. Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1998) Sulfate reduction related to the early diagenetic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem 29(5–7):1517–1530. doi: 10.1016/S0146-6380(98) 00124-7 CrossRefGoogle Scholar
  13. Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1999) Isotopendiskriminierung (34S/32S, 13C/12C) im Zusammenhang mit dem Auftreten großflächiger anoxischer Sedimentoberflächen im Rückseitenwatt der Insel Baltrum (südliche Nordsee). Zentralblatt für Geologie und Paläontologie, Teil 1 1997:1063–1075Google Scholar
  14. Böttcher ME (2003) Schwarze Flecken und Flächen im Wattenmeer. In: Lozán JL, Rachor E, Reise K, Sündermann J, Westernhagen HV (eds) Warnsignale aus der Nordsee & Wattenmeer—Eine aktuelle Umweltbilanz. Wissenschaftliche Auswertungen, Blackwell, Berlin, pp 193–195Google Scholar
  15. Bosselmann K, Böttcher ME, Billerbeck M, Walpersdorf E, Theune A, de Beer D, Hüttel M, Brumsack H-J, Jørgensen BB (2003) Iron–sulfur–manganese dynamics in intertidal surface sediments of the North Sea. Ber. Forschungsz. Terramare 12:32–35Google Scholar
  16. Bruland KW (1983) Trace elements in seawater. Chem. Oceanogr. 8:157–220Google Scholar
  17. Brumsack H-J, Gieskes JM (1983) Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar Chem 14:89–106. doi: 10.1016/0304-4203(83) 90072-5 CrossRefGoogle Scholar
  18. Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50(2):491–497Google Scholar
  19. Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284. doi: 10.1016/0012-8252(93) 90040-E CrossRefGoogle Scholar
  20. Callender E, Bowser CJ (1980) Manganese and copper geochemistry of interstitial fluids from manganese-nodule-rich pelagic sediments of the northeastern equatorial Pacific Ocean. Am J Sci 280:1063–1096Google Scholar
  21. Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632. doi: 10.1016/0016-7037(89) 90005-7 CrossRefGoogle Scholar
  22. Canfield DE, Raiswell R, Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292:659–683Google Scholar
  23. Chang TS, Joerdel O, Flemming BW, Bartholomä A (2006) The role of particle and seasonal sediment turnover in a back-barrier tidal basin, East Frisian Wadden Sea, southern North Sea. Mar Geol 235:49–61. doi: 10.1016/j.margeo.2006.10.004 CrossRefGoogle Scholar
  24. Chen MS, Wartel S, Temmerman S (2005) Seasonal variation of floc characteristics on tidal flats, the Scheldt estuary. Hydrobiologia 540:181–195. doi: 10.1007/s10750-004-7143-6 CrossRefGoogle Scholar
  25. Cheshire MV, Berrow ML, Goodman BA, Mundie CM (1977) Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim Cosmochim Acta 41:1131–1138. doi: 10.1016/0016-7037(77) 90108-9 CrossRefGoogle Scholar
  26. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  27. Cochran JK, Carey AE, Sholkovitz ER, Surprenant LD (1986) The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochim Cosmochim Acta 50:663–680. doi: 10.1016/0016-7037(86) 90344-3 CrossRefGoogle Scholar
  28. Cole JJ, Howarth RW, Nolan SS, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 2:179–196. doi: 10.1007/BF02180194 CrossRefGoogle Scholar
  29. Cole JJ, Lane JM, Marino R, Howarth RW (1993) Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnol Oceanogr 38(1):25–35Google Scholar
  30. Collier RW (1985) Molybdenum in the Northeast Pacific Ocean. Limnol Oceanogr 30(6):1351–1354Google Scholar
  31. Craig H (1974) A scavenging model of trace elements in the deep sea. Earth Planet Sci Lett 23:149–159. doi: 10.1016/0012-821X(74) 90042-9 CrossRefGoogle Scholar
  32. de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JE, Böttcher ME, Musat N, Dubilier N (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea. Limnol Oceanogr 50(1):113–127Google Scholar
  33. De Jonge VN, Essink K, Boddeke R (1993) The Dutch Wadden Sea—a changed ecosystem. Hydrobiologia 265(1–3):45–71Google Scholar
  34. Dellwig O, Beck M, Lemke A, Lunau M, Kolditz K, Schnetger B, Brumsack H-J (2007a) Non-conservative behaviour of molybdenum in coastal waters: coupling geochemical, biological, and sedimentological processes. Geochim Cosmochim Acta 71:2745–2761. doi: 10.1016/j.gca.2007.03.014 CrossRefGoogle Scholar
  35. Dellwig O, Bosselmann K, Kölsch S, Hentscher M, Hinrichs J, Böttcher ME, Reuter R, Brumsack H-J (2007b) Sources and fate of manganese in a tidal basin of the German Wadden Sea. J Sea Res 57(1):1–18. doi: 10.1016/j.seares.2006.07.006 CrossRefGoogle Scholar
  36. Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA (1982) Environmental oxidation rate of manganese(II): bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079. doi: 10.1016/0016-7037(82) 90060-6 CrossRefGoogle Scholar
  37. Erickson BE, Helz GR (2000) Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim Cosmochim Acta 64(7):1149–1158. doi: 10.1016/S0016-7037(99) 00423-8 CrossRefGoogle Scholar
  38. Feely RA, Massoth GJ, Paulson AJ, Gendron JF (1983) Possible evidence for enrichment of trace-elements in the hydrous manganese oxide phases of suspended matter from an urbanized embayment. Estuar Coast Shelf Sci 17:693–708. doi: 10.1016/0272-7714(83) 90035-5 CrossRefGoogle Scholar
  39. Franke U, Polerecky L, Precht E, Huettel M (2006) Wave tank study of particulate organic matter degradation in permeable sediments. Limnol Oceanogr 51(2):1084–1096Google Scholar
  40. Goldberg ED (1954) Marine geochemistry I. Chemical scavengers of the sea. J Geol 62:249–265CrossRefGoogle Scholar
  41. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley, New York, NYCrossRefGoogle Scholar
  42. Grunwald M, Dellwig O, Liebezeit G, Schnetger B, Reuter R, Brumsack H-J (2007) A novel time-series station in the Wadden Sea (NW Germany: First results on continuous nutrient and methane measurements. Mar Chem 107:411–421. doi: 10.1016/j.marchem.2007.04.003 CrossRefGoogle Scholar
  43. Head PC, Burton JD (1970) Molybdenum in some ocean and estuarine waters. J Mar Biol Assoc U K 50:439–448Google Scholar
  44. Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Patrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60(19):3631–3642. doi: 10.1016/0016-7037(96) 00195-0 CrossRefGoogle Scholar
  45. Helz GR, Vorlicek TP, Kahn MD (2004) Molybdenum scavenging by iron monosulfides. Environ Sci Technol 38:4263–4268. doi: 10.1021/es034969+ CrossRefGoogle Scholar
  46. Hinrichs J, Dellwig O, Brumsack H-J (2002) Lead in sediments and suspended particulate matter of the German Bight: natural versus anthropogenic origin. Appl Geochem 17:621–632. doi: 10.1016/S0883-2927(01) 00124-X CrossRefGoogle Scholar
  47. Hoffman SJ, Fletcher WK (1981) Organic matter scavenging of copper, zinc, molybdenum, iron and manganese, estimated by a sodium hypochlorite extraction (pH 9.5). J Geochem Explor 15:549–562. doi: 10.1016/0375-6742(81) 90086-8 CrossRefGoogle Scholar
  48. Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702. doi: 10.1016/0016-7037(92) 90353-K CrossRefGoogle Scholar
  49. Huizinga DL, Kester DR (1982) The distribution of vanadium in the Northwestern Atlantic Ocean. EOS 63:990Google Scholar
  50. Klinkhammer GP (1980) Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results. Earth Planet Sci Lett 49:81–101. doi: 10.1016/0012-821X(80) 90151-X CrossRefGoogle Scholar
  51. Klinkhammer GP, Palmer MR (1991) Uranium in the oceans: where it goes and why. Geochim Cosmochim Acta 55:1799–1806. doi: 10.1016/0016-7037(91) 90024-Y CrossRefGoogle Scholar
  52. Klinkhammer GP, Heggie DT, Graham DW (1982) Metal diagenesis in oxic marine sediments. Earth Planet Sci Lett 61:211–219. doi: 10.1016/0012-821X(82) 90054-1 CrossRefGoogle Scholar
  53. Kolditz K, Dellwig O, Barkowski J, Beck M, Freund H, Brumsack H-J (2009) Salt marsh restoration: Effects of de-embankment on pore water geochemistry. J Coast Res (in press).Google Scholar
  54. Koschinsky A, Winkler A, Fritsche U (2003) Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water. Appl Geochem 18:693–710. doi: 10.1016/S08830-2927(02) 00161-0 CrossRefGoogle Scholar
  55. Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25(5):797–806CrossRefGoogle Scholar
  56. Ku TL, Knauss KG, Mathieu GG (1977) Uranium in open ocean—concentration and isotopic composition. Deep-Sea Res 24(11):1005–1017. doi: 10.1016/0146-6291(77) 90571-9 CrossRefGoogle Scholar
  57. Lovley DR, Phillips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416. doi: 10.1038/350413a0 CrossRefGoogle Scholar
  58. Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulphate-reducing bacteria. Mar Geol 113:41–53. doi: 10.1016/0025-3227(93) 90148-O CrossRefGoogle Scholar
  59. Lubbers GW, Gieskes WWC, del Castilho P, Salomons W, Bril J (1990) Manganese accumulation in the high pH microenvironment of Phaeocystis sp. (Haptophyceae) colonies from the North Sea. Mar Ecol Prog Ser 59:285–293. doi: 10.3354/meps059285 CrossRefGoogle Scholar
  60. Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Limnol Oceanogr 51(2):847–859Google Scholar
  61. Luther GWIII, Shellenbarger PA, Brendel PJ (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim Cosmochim Acta 60(6):951–960. doi: 10.1016/0016-7037(95) 00444-0 CrossRefGoogle Scholar
  62. Maeda M, Windom HL (1982) Behavior of uranium in 2 estuaries of the southeastern United States. Mar Chem 11(5):427–436. doi: 10.1016/0304-4203(82) 90008-1 CrossRefGoogle Scholar
  63. Martens P, Elbrächter M (1997) Zeitliche und räumliche Variabilität der Mikronährstoffe und des Phytoplanktons im Sylt-Rømø Wattenmeer. In: Gätje C, Reise K (eds) Ökosystem Wattenmeer—Austausch-Transport- und Stoffumwandlungsprozesse. Springer, Heidelberg, Berlin, pp 65–79Google Scholar
  64. Matthiesen H, Leipe T, Laima MJC (2001) A new experimental setup for studying the formation of phosphate binding iron oxides in marine sediments—preliminary results. Biogeochemistry 52:79–92. doi: 10.1023/A:1026570318469 CrossRefGoogle Scholar
  65. McManus J, Nägler TF, Siebert C, Wheat CG, Hammond DE (2002) Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge–flank alteration. Geochem Geophys Geosyst 3(12):1–9. doi: 10.1029/2002GC000356 CrossRefGoogle Scholar
  66. McManus J, Berelson WM, Severmann S, Poulson RL, Hammond DE, Klinkhammer GP, Holm C (2006) Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim Cosmochim Acta 70:4643–4662. doi: 10.1016/j.gca.2006.06.1564 CrossRefGoogle Scholar
  67. Middelburg JJ, Hoede D, Vandersloot HA, Vanderweijden CH, Wijkstra J (1988) Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochim Cosmochim Acta 52(12):2871–2878. doi: 10.1016/0016-7037(88) 90154-8 CrossRefGoogle Scholar
  68. Morford JL, Emerson SR, Breckel EJ, Kim SH (2005) Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim Cosmochim Acta 69:5021–5032. doi: 10.1016/j.gca.2005.05.015 CrossRefGoogle Scholar
  69. Morford JL, Martin WR, Kalnejais LH, François R, Bothner M, Karle I-M (2007) Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA. Geochim Cosmochim Acta 71:895–917. doi: 10.1016/j.gca.2006.10.016 CrossRefGoogle Scholar
  70. Morris AW (1975) Dissolved molybdenum and vanadium in the Northeast Atlantic Ocean. Deep-Sea Res 22(1):49–54Google Scholar
  71. Neubert N, Nägler TF, Böttcher ME (2008) Sulphidity controls molybdenum isotope discrimination into euxinic sediments: evidence from the modern Black Sea. Geology 36(10):775–778. doi: 10.1130/G24959A.1 CrossRefGoogle Scholar
  72. Nico PS, Anastasio C, Zasoski RJ (2002) Rapid photo-oxidation of Mn(II) mediated by humic substances. Geochim Cosmochim Acta 66:4047–4056. doi: 10.1016/S0016-7037(02) 01001-3 CrossRefGoogle Scholar
  73. Nissenbaum A, Swaine DJ (1975) Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim Cosmochim Acta 40:809–816. doi: 10.1016/0016-7037(76) 90033-8 CrossRefGoogle Scholar
  74. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55(3–4):287–333. doi: 10.1016/S0079-6611(02) 00138-6 CrossRefGoogle Scholar
  75. Philippart CJM, Cadee GC, van Raaphorst W, Riegman R (2000) Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnol Oceanogr 45(1):131–144Google Scholar
  76. Ploug H, Kühl M, Buchholz-Cleven B, Jorgensen BB (1997) Anoxic aggregates—an ephemeral phenomenon in the pelagic environment. Aquat Microb Ecol 13:285–294. doi: 10.3354/ame013285 CrossRefGoogle Scholar
  77. Poulton SW (2003) Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite. Chem Geol 202(1–2):79–94. doi: 10.1016/S0009-2541(03) 00237-7 CrossRefGoogle Scholar
  78. Raabe TU, Brockmann UH, Dürselen CD, Krause M, Rick HJ (1997) Nutrient and plankton dynamics during a spring drift experiment in the German Bight. Mar Ecol Prog Ser 156:275–288. doi: 10.3354/meps156275 CrossRefGoogle Scholar
  79. Rodushkin I, Ruth T (1997) Determination of trace metals in estuarine and seawater reference materials by high resolution inductively coupled plasma mass spectrometry. J Anal At Spectrom 12(10):1181–1185. doi: 10.1039/a702486j CrossRefGoogle Scholar
  80. Roitz JS, Flegal AR, Bruland KW (2002) The biogeochemical cycling of manganese in San Francisco Bay: temporal and spatial variations in surface water concentrations. Estuar Coast Shelf Sci 54:227–239. doi: 10.1006/ecss.2000.0839 CrossRefGoogle Scholar
  81. Rusch A, Huettel M (2000) Advective particle transport into permeable sediments—evidence from experiments in an intertidal sandflat. Limnol Oceanogr 45(3):524–533CrossRefGoogle Scholar
  82. Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33:290–294. doi: 10.1016/S0043-1354(98) 00168-7 CrossRefGoogle Scholar
  83. Sawlan JJ, Murray JW (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic sediments. Earth Planet Sci Lett 64:213–230. doi: 10.1016/0012-821X(83) 90205-4 CrossRefGoogle Scholar
  84. Shaw TJ, Sholkovitz ER, Klinkhammer G (1994) Redox dynamics in the Chesapeake Bay—the effect on sediment–water uranium exchange. Geochim Cosmochim Acta 58(14):2985–2995. doi: 10.1016/0016-7037(94) 90173-2 CrossRefGoogle Scholar
  85. Shiller AM (1997) Manganese in surface waters of the Atlantic Ocean. Geophys Res Lett 24(12):1495–1498. doi: 10.1029/97GL01456 CrossRefGoogle Scholar
  86. Shiller AM, Mao LJ (1999) Dissolved vanadium on the Louisiana Shelf: effect of oxygen depletion. Continent Shelf Res. 19(8):1007–1020. doi: 10.1016/S0278-4343(99) 00005-9 CrossRefGoogle Scholar
  87. Slomp CP, Malschaert JFP, Lohse L, van Raaphorst W (1997) Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Cont Shelf Res 17(9):1083–1117. doi: 10.1016/S0278-4343(97) 00005-8 CrossRefGoogle Scholar
  88. Statham PJ, Yeats PA, Landing WM (1998) Manganese in the eastern Atlantic Ocean: processes influencing deep and surface water distributions. Mar Chem 61(1–2):55–68. doi: 10.1016/S0304-4203(98) 00007-3 CrossRefGoogle Scholar
  89. Streif H (1990) Das ostfriesische Küstengebiet–Nordsee, Inseln, Watten und Marschen. Sammlung Geologischer Führer, 2. völlig neubearb. Aufl., Gebrüder Borntraeger, Berlin, Stuttgart, p 376Google Scholar
  90. Szalay A, Szilágyi M (1967) The association of vanadium with humic acids. Geochim Cosmochim Acta 31:1–6. doi: 10.1016/0016-7037(67) 90093-2 CrossRefGoogle Scholar
  91. Szilagyi M (1967) Sorption of molybdenum by humus preparations. Geochem Int 4:1165–1167Google Scholar
  92. Tabatabai MA (1974) Determination of sulphate in water samples. Sulphur Inst J 10:11–13Google Scholar
  93. Tappin AD, Millward GE, Statham PJ, Burton JD, Morris AW (1995) Trace-Metals in the Central and Southern North-Sea. Estuar Coast Shelf Sci 41(3):275–323Google Scholar
  94. Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GWIII (2006) Soluble Mn(III) in suboxic zones. Science 313(5795):1955–1957. doi: 10.1126/science.1132876 CrossRefGoogle Scholar
  95. Tuit CB, Ravizza G (2003) The marine distribution of molybdenum. Geochim Cosmochim Acta 67(18):A495–A495 Suppl. 1Google Scholar
  96. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Internat Verein Limnol 9:38Google Scholar
  97. van Beusekom JEE, Brockmann U, Hesse KJ, Hickel W, Poremba K, Tillmann U (1999) The importance of sediments in the transformation and turnover of nutrients and organic matter in the Wadden Sea and German Bight. Dtsch Hydrographische Z 51(2/3):245–266. doi: 10.1007/BF02764176 CrossRefGoogle Scholar
  98. van Beusekom JEE, de Jonge VN (2002) Long-term changes in Wadden Sea nutrient cycles: importance of organic matter import from the North Sea. Hydrobiologia 475(1):185–194. doi: 10.1023/A:1020361124656 CrossRefGoogle Scholar
  99. van Raaphorst W, Kloosterhuis HT (1994) Phosphate sorption in superficial intertidal sediments. Mar Chem 48(1):1–16. doi: 10.1016/0304-4203(94) 90058-2 CrossRefGoogle Scholar
  100. von Langen PJ, Johnson KS, Coale KH, Elrod VA (1997) Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations. Geochim Cosmochim Acta 61(23):4945–4954. doi: 10.1016/S0016-7037(97) 00355-4 CrossRefGoogle Scholar
  101. Vorlicek TP, Helz GR (2002) Catalysis by mineral surfaces: implications for Mo geochemistry in anoxic environments. Geochim Cosmochim Acta 66:3679–3692. doi: 10.1016/S0016-7037(01) 00837-7 CrossRefGoogle Scholar
  102. Vorlicek TP, Kahn MD, Kasuya Y, Helz GR (2004) Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides. Geochim Cosmochim Acta 68(3):547–556. doi: 10.1016/S0016-7037(03) 00444-7 CrossRefGoogle Scholar
  103. Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56:1471–1483. doi: 10.1016/0016-7037(92) 90217-7 CrossRefGoogle Scholar
  104. Wasylenki LE, Rolfe BA, Weeks CL, Spiro TG, Anbar AD (2008) Experimental investigation of the effect of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005. doi: 10.1016/j.gca.2008.08.027 CrossRefGoogle Scholar
  105. Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the earth, vol 8. Pergamon, Oxford, pp 305–333Google Scholar
  106. Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsoption and hydrolysis promote oxygenation. Geochim Cosmochim Acta 53:69–77. doi: 10.1016/0016-7037(89) 90273-1 CrossRefGoogle Scholar
  107. Yamazaki H, Gohda S (1990) Distribution of dissolved molybdenum in the Seto Inland Sea, the Japan Sea, the Bering Sea and the Northwest Pacific-Ocean. Geochem J 24(4):273–281Google Scholar
  108. Zheng Y, Anderson RF, van Geen A, Fleisher MQ (2002) Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim Cosmochim Acta 66:1759–1772. doi: 10.1016/S0016-7037(01) 00886-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nicole Kowalski
    • 1
    Email author
  • Olaf Dellwig
    • 1
    • 2
  • Melanie Beck
    • 2
  • Maik Grunwald
    • 2
    • 3
  • Sibylle Fischer
    • 2
  • Maike Piepho
    • 4
  • Thomas Riedel
    • 2
  • Holger Freund
    • 4
  • Hans-Jürgen Brumsack
    • 2
  • Michael E. Böttcher
    • 1
  1. 1.Leibniz Institute for Baltic Sea Research (IOW)RostockGermany
  2. 2.Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgOldenburgGermany
  3. 3.GKSS Research CentreGeesthachtGermany
  4. 4.Institute for Chemistry and Biology of the Marine Environment (ICBM-Terramare)Carl von Ossietzky University of OldenburgWilhelmshavenGermany

Personalised recommendations