Ocean Dynamics

, Volume 59, Issue 2, pp 263–275 | Cite as

Distributions and characteristics of dissolved organic matter in temperate coastal waters (Southern North Sea)

  • Andrea LübbenEmail author
  • Olaf Dellwig
  • Sandra Koch
  • Melanie Beck
  • Thomas H. Badewien
  • Sibylle Fischer
  • Rainer Reuter


The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.


CDOM Gelbstoff DOM DOC Fluorescence Wadden Sea German Bight 



The authors would like to thank the crews of R/V Senckenberg and R/V Heincke for their assistance and facilitation during the cruises. We wish to thank I. Ötken and A. Braun for their helpful assistance with the sample collection and analysis. We are also grateful to L. Aden (Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, NLWKN) and J. Meinen-Hieronimus for providing the terrestrial run-off volumes via the flood-gates of Neuharlingersiel. The investigations are part of the research programme BioGeoChemistry of Tidal Flats funded by the Deutsche Forschungsgemeinschaft (DFG) through grants FOR 432/1-1, RE 624/5 and BR 775/14-1/2.


  1. Beck M, Dellwig O, Kolditz K, Freund H, Liebezeit G, Schnetger B, Brumsack H-J (2007) In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144Google Scholar
  2. Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack H-J (2008a) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments. Estuar Coast Shelf Sci 79:307–316, doi: 10.1016/j.ecss.2008.04.007 CrossRefGoogle Scholar
  3. Beck M, Dellwig O, Holstein JM, Grunwald M, Liebezeit G, Schnetger B, Brumsack H-J (2008b) Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat. Biogeochemistry 89:221–238, doi: 10.1007/s10533-008-9215-6 CrossRefGoogle Scholar
  4. Beck M, Dellwig O, Schnetger B, Brumsack H-J (2008c) Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochim Cosmochim Acta 72:2822–2840, doi: 10.1016/j.gca.2008.04.013 CrossRefGoogle Scholar
  5. Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M (2006a) Nutrient release from an exposed intertidal sand flat. Mar Ecol Prog Ser 316:35–51, doi: 10.3354/meps316035 CrossRefGoogle Scholar
  6. Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M (2006b) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76, doi: 10.3354/meps326061 CrossRefGoogle Scholar
  7. Breves W, Reuter R, Delling N, Michaelis W (2003) Fluorophores in the Arabian Sea and their relation to upwelling processes. Ocean Dyn 53:73–85, doi: 10.1007/s10236-003-0025-z CrossRefGoogle Scholar
  8. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53Google Scholar
  9. Callahan J, Dai M, Chen RF, Li X, Lu Z, Huang W (2004) Distribution of dissolved organic mater in the Pearl River Estuary. Mar Chem 89:211–224, doi: 10.1016/j.marchem.2004.02.013 CrossRefGoogle Scholar
  10. Chang TS, Bartholomä A, Flemming BW (2006) Seasonal dynamics of fine-grained sediments in a back-barrier tidal basin of the German Wadden Sea (Southern North Sea). J Coast Res 22(2):328–338, doi: 10.2112/03-0085.1 CrossRefGoogle Scholar
  11. Chen RF, Gardner GB (2004) High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Mar Chem 89:103–125, doi: 10.1016/j.marchem.2004.02.026 CrossRefGoogle Scholar
  12. Chen Z, Hu C, Conmy RN, Muller-Karger F, Swarzenski P (2007) Colored dissolved organic matter in Tampa Bay, Florida. Mar Chem 104:98–109, doi: 10.1016/j.marchem.2006.12.007 CrossRefGoogle Scholar
  13. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar Chem 51:325–346, doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  14. Coble PG, Green S, Blough NV, Gagosian RB (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–435, doi: 10.1038/348432a0 CrossRefGoogle Scholar
  15. Conmy RN, Coble PG, Chen R, Gardner GB (2004) Optical properties of colored dissolved organic matter in the Northern Gulf of Mexico. Mar Chem 89:127–144, doi: 10.1016/j.marchem.2004.02.010 CrossRefGoogle Scholar
  16. de Souza Sierra MM, Donard OFX, Lamotte M (1997) Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes. Mar Chem 58:51–58, doi: 10.1016/S0304-4203(97)00025-X CrossRefGoogle Scholar
  17. Dellwig O, Bosselmann K, Kölsch S, Hentscher M, Hinrichs J, Böttcher ME, Reuter R, Brumsack H-J (2007a) Sources and fate of manganese in a tidal basin of the German Wadden Sea. J Sea Res 57(1):1–18, doi: 10.1016/j.seares.2006.07.006 CrossRefGoogle Scholar
  18. Dellwig O, Beck M, Lemke A, Lunau M, Kolditz K, Schnetger B, Brumsack H-J (2007b) Non-conservative behaviour of molybdenum in coastal waters (Wadden Sea of NW Germany): coupling of biological, sedimentological, and geochemical processes. Geochim Cosmochim Acta 71:2745–2761, doi: 10.1016/j.gca.2007.03.014 CrossRefGoogle Scholar
  19. Del Castillo CE, Coble PG, Morell JM, Lopez JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66:35–51, doi: 10.1016/S0304-4203(99)00023-7 CrossRefGoogle Scholar
  20. Del Vecchio R, Blough NV (2004) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem 89:169–187, doi: 10.1016/j.marchem.2004.02.027 CrossRefGoogle Scholar
  21. Determann S (1995) Analyse biologischer und biochemischer Prozesse im Meer mit Fluoreszenzspektroskopie. Carl von Ossietzky Universität Oldenburg, DissGoogle Scholar
  22. Determann S, Reuter R, Wagner P, Willkomm R (1994) Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution. Deep Sea Res Part I Oceanogr Res Pap 41(4):659–675, doi: 10.1016/0967-0637(94)90048-5 CrossRefGoogle Scholar
  23. Duursma EK (1974) The fluorescence of dissolved organic matter in the sea. In: Jerlov NG, Steeman Mielsen E (eds) Optical aspects of oceanography. Academic, London, pp 237–256Google Scholar
  24. Ertel JR, Hedges JI, Devol AH, Richey JE, Ribeiro MNG (1986) Dissolved humic substances in the Amazon river system. Limnol Oceanogr 31:739–754Google Scholar
  25. Flemming BW, Ziegler K (1995) High resolution grain size distribution patterns and textural trends in the backbarrier environment of Spiekeroog Island (southern North Sea). Senkenb Marit 26:1–24Google Scholar
  26. Gebhardt S (2005) Organisch-geochemische Untersuchungen der Oberflächengewässer aus dem Einzugsgebietder Sielacht Esens (Ostfriesland). Carl von Ossietzky Universität Oldenburg, DissGoogle Scholar
  27. Gueguen C, Guo L, Tanaka N (2005) Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Cont Shelf Res 25:1195–1207, doi: 10.1016/j.csr.2005.01.005 CrossRefGoogle Scholar
  28. Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916Google Scholar
  29. Hedges JI (1992) Global biogeochemical cycles: progress and problems. Mar Chem 39:67–93, doi: 10.1016/0304-4203(92)90096-S CrossRefGoogle Scholar
  30. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environment. Org Geochem 31:945–958, doi: 10.1016/S0146-6380(00)00096-6 CrossRefGoogle Scholar
  31. Hong H, Wu J, Shang S, Hu C (2005) Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China. Mar Chem 97:78–89, doi: 10.1016/j.marchem.2005.01.008 CrossRefGoogle Scholar
  32. Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45(3):534–549Google Scholar
  33. Huettel M, Ziebis W, Forster S, Luther GW (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim Cosmochim Acta 62(4):613–631, doi: 10.1016/S0016-7037(97)00371-2 CrossRefGoogle Scholar
  34. Kalle K (1938) Zum Problem der Meerwasserfarbe. Ann Hydrol Mar Mitt 66:1–13Google Scholar
  35. Kalle K (1949) Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen. Ocean Dyn 2:117–124, doi: 10.1007/BF02225972 Google Scholar
  36. Kirk JTO (1988) Solar heating of water bodies as influenced by their inherent optical properties. J Geophys Res 93:10897–10908, doi: 10.1029/JD093iD09p10897 CrossRefGoogle Scholar
  37. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  38. Kölsch S, Gebhardt S, Terjung F, Liebezeit G, Reuter R, Rullkötter J, Brumsack H-J (2003) Freshwater discharge into the East Frisian Wadden Sea: geochemistry of humic matter-rich waters. Berichte—Forschungszentrum Terramare 12:71–74Google Scholar
  39. Kouassi A, Zika R (1990) Light-induced alteration of the photophysical properties of dissolved organic matter in seawater. Neth J Sea Res 27(1):25–32, doi: 10.1016/0077-7579(90)90031-B CrossRefGoogle Scholar
  40. Krause G, Budeus G, Gerdes G, Schaumann K, Hesse K (1986) Frontal systems in the German Bight and their physical and biological effects. In: Nihoul JCJ (ed) Marine interfaces ecohydrodynamics. Elsevier Oceanography Series 42, Elsevier, Amsterdam, pp 119–140CrossRefGoogle Scholar
  41. Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Limnol Oceanogr 51:847–859Google Scholar
  42. Malcolm RL (1990) The uniqueness of humic substances in each of soil, stream ans marine environments. Ann Chem Acta 232:19–30, doi: 10.1016/S0003-2670(00)81222-2 CrossRefGoogle Scholar
  43. Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42(6):1317–1324Google Scholar
  44. Mopper K, Schultz CA (1993) Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Mar Chem 41:229–238, doi: 10.1016/0304-4203(93)90124-7 CrossRefGoogle Scholar
  45. Moran MA, Hodson RE (1994) Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnol Oceanogr 39(4):762–771CrossRefGoogle Scholar
  46. Moran MA, Sheldon WM Jr, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45(6):1254–1264Google Scholar
  47. Muller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R (1989) Pigment distribution in the Caribbean Sea: observation from space. Prog Oceanogr 23:23.64Google Scholar
  48. Nieke B, Reuter R, Heuermann R, Wang H, Babin M, Therriault JC (1997) Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in St. Lawrence Estuary (Case2 waters). Cont Shelf Res 17(3):235–252, doi: 10.1016/S0278-4343(96)00034-9 CrossRefGoogle Scholar
  49. Niesel V, Günther CP (1999) Distribution of nutrients, algae and zooplankton in the Spiekeroog backbarrier system. In: Dittmann S (ed) The Wadden Sea ecosystem—stability properties and mechanisms. Springer, Berlin, pp 77–94Google Scholar
  50. NLWKN (2000) Nährstoffeinträge in die Nordsee, Niedersächsischer Landesbetrieb für Wasserwirtschaft und Küstenschutz-Betriebsstelle AurichGoogle Scholar
  51. NLWKN (2004) Ermittlung von Abflüssen über Siel- und Pumpmengen in Ostfriesland, Niedersächsischer Landesbetrieb für Wasserwirtschaft und Küstenschutz-Betriebsstelle AurichGoogle Scholar
  52. Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43(6):1297–1304Google Scholar
  53. Puncken O, Badewien T, Reuter R (2006) MOSES (measuring system for the observation of sea surfaces): Lagrangian drift experiments in the East Frisian Wadden Sea. In: Marcal A (ed) Global developments in environmental earth observation from space. Millpress, Rotterdam, The Netherlands, pp 697–706Google Scholar
  54. Reuter R, Diebel-Langohr D, Doerffer R, Dörre F, Haardt H, Hengstermann T (1986) Optical properties of gelbstoff. In: The influence of yellow substances on remote sensing in seawater constituents from space, vol 2. GKSS Forschungszentrum Geesthacht, Germany, 58ffGoogle Scholar
  55. Reuter R, Diebel D, Hengstermann T (1993) Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adriatic Sea. Int J Remote Sens 14(5):823–848, doi: 10.1080/01431169308904380 CrossRefGoogle Scholar
  56. Rochelle-Newall EJ, Fisher TR (2002) Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar Chem 77:23–41, doi: 10.1016/S0304-4203(01)00073-1 CrossRefGoogle Scholar
  57. Shaw TJ (2003) Methods and models for estimating advective pore water exchange in tidal flats. Berichte—Forschungszentrum Terramare 12:103–104Google Scholar
  58. Skoog A, Hall POJ, Hulth S, Paxéus N, Van Der Loeff MR, Westerlund S (1996) Early diagenetic production and sediment–water exchange of fluorescent dissolved organic matter in the coastal environment. Geochim Cosmochim Acta 60(19):3619–3629, doi: 10.1016/0016-7037(96)83275-3 CrossRefGoogle Scholar
  59. Spitzy A, Ittekkot V (1986) Gelbstoff: an uncharacterized fraction of dissolved organic carbon. In: The influence of yellow substances on remote sensing of seawater constituents from space, volume II, Appendix 1, 31 pp. ESA Contract No. RFQ 3-5060/84/NL/MD, GKSS Forschungszentrum Geesthacht, Germany, December 1986Google Scholar
  60. Stanev EV, Wolff J-O, Burchard H, Bolding K, Flöser G (2003) On the Circulation in the East Frisian Wadden Sea: numerical modeling and data analysis. Ocean Dyn 53(1):27–51, doi: 10.1007/s10236-002-0022-7 CrossRefGoogle Scholar
  61. Sündermann J, Hesse K-J, Beddig S (1999) Coastal mass and energy fluxes in the southeastern North Sea. Ocean Dyn 51:113–132Google Scholar
  62. Traganza ED (1969) Fluorescence excitation and emission spectra of dissolved organic matter in sea water. Bull Mar Sci 19:897–904Google Scholar
  63. Velapoldi RA, Mielenz KD (1980) A fluorescence standard reference material: quinine sulphate dihydrate. NBS Special Publication SP 260-64. National Bureau of Standards, Washington DC, 139 pp. Available at
  64. Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42(4):674–686Google Scholar
  65. Volkenborn N, Polerecky L, Hedtkamp SIC, van Beusekom JEE, de Beer D (2007) Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol Oceanogr 52:1898–1909Google Scholar
  66. Wolff J-O, Flemming BW (2003) Tidal asymmetries, water exchanges and sediment transports in the East Frisian Wadden Sea. Berichte—Forschungszentrum Terramare 12:132–137Google Scholar
  67. Zimmermann JTF, Rommets JW (1974) Natural fluorescence as a tracer in the Dutch Wadden Sea and adjacent North Sea. Neth J Sea Res 8:117–125, doi: 10.1016/0077-7579(74)90012-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrea Lübben
    • 1
    • 5
    Email author
  • Olaf Dellwig
    • 2
    • 4
  • Sandra Koch
    • 3
  • Melanie Beck
    • 4
  • Thomas H. Badewien
    • 1
  • Sibylle Fischer
    • 4
  • Rainer Reuter
    • 1
  1. 1.Institute of PhysicsCarl von Ossietzky University of OldenburgOldenburgGermany
  2. 2.Leibniz Institute for Baltic Sea ResearchRostockGermany
  3. 3.Faculty of TechnologyUniversity of Applied Sciences Fachhochschule Oldenburg/Ostfriesland/WilhelmshavenEmdenGermany
  4. 4.Institute for Chemistry and Biology of the Marine EnvironmentCarl von Ossietzky University of OldenburgOldenburgGermany
  5. 5.OceanWaveS GmbHLüneburgGermany

Personalised recommendations