Ocean Dynamics

, Volume 59, Issue 3, pp 463–475 | Cite as

Wind-driven wave heights in the German Bight



Wind speed, friction velocity and significant wave height data from the FINO1 platform in the southern German Bight 45 km off the coast for the years 2004 to 2006 have been evaluated and related to each other. The data show a clear dependence of the hourly mean wave height to the hourly mean friction velocity and wind speed. Wave heights increase with decreasing stratification and increasing fetch. Synoptic weather patterns for the highest wave heights in the southern German Bight are determined. The analysis is made separately for four wind direction sectors. The two strongest storms in the evaluated period, “Britta” and “Erwin”, are analysed in more detail. Finally, the 50-year extreme significant wave height has been estimated to be about 11 m most probably coming from northerly directions.


Significant wave height FINO1 German Bight Violent storms 50-year return wave height 



The data evaluation in this study is based on the work for the PhD thesis of the second author. This study would not have been possible without the funding from the German Ministry of the Environment under no. FKZ 0320061, which is thankfully acknowledged here. We like to thank also Thomas Neumann from the DEWI (Deutsches Windenergie-Institut, Wilhelmshaven, Germany) for help in the data transfer and the leadership in a group of scientific projects to which the present one belonged and Kai Herklotz from the BSH (German Federal Maritime and Hydrographic Agency, Hamburg, Germany) for supplying the wave height and period data. The various comments by the three anonymous reviewers were very helpful.


  1. Alstrup P, Larsen SE (1999) WasP engineering—flow model for wind over land and sea. Risø report, Risø-R-1107(EN)Google Scholar
  2. Alves JHGM, Young IR (2003) On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Appl Ocean Res 25:167–186. doi: 10.1016/j.apor.2004.01.002 CrossRefGoogle Scholar
  3. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos 28:181–189. doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 CrossRefGoogle Scholar
  4. Bye JAT, Wolff J-O (2008) Charnock dynamics: a model for the velocity structure in the wave boundary layer of the air–sea interface. Ocean Dyn 58:31–42. doi: 10.1007/s10236-007-0130-5 CrossRefGoogle Scholar
  5. Carter DJT (1993) Estimating extreme wave heights in the NE Atlantic from GEOSAT data. Health and Safety Executive—Offshore Technology Report. Her Majesty’s Stationary Office OTH 93 396. 28 ppGoogle Scholar
  6. Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640. doi: 10.1002/qj.49708135027 CrossRefGoogle Scholar
  7. Dyer AJ (1974) A review of flux-profile relations. Boundary-Layer Meteorol 1:363–372. doi: 10.1007/BF00240838 CrossRefGoogle Scholar
  8. Emeis S (1987) Pressure drag of obstacles in the atmospheric boundary layer. J Appl Meteorol 29:461–476. doi: 10.1175/1520-0450(1990)029<0461:PDOOIT>2.0.CO;2 CrossRefGoogle Scholar
  9. Herklotz K (2007) Oceanographic results of two years operation of the first offshore wind research platform in the German Bight—FINO1. DEWI Mag 30:47–51Google Scholar
  10. Hersbach H, Janssen PAEM (1999) Improvement of the short-fetch behavior in the wave ocean model (WAM). J Atmos Ocean Technol 16:884–892. doi: 10.1175/1520-0426(1999)016<0884:IOTSFB>2.0.CO;2 CrossRefGoogle Scholar
  11. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78. doi: 10.1007/BF00119875 CrossRefGoogle Scholar
  12. Kumar VS, Deo MC, Anand NM, Chandramohan P (1999) Estimation of wave directional spreading in shallow water. Ocean Eng 26:23–98. doi: 10.1016/S0029-8018(97)10014-2 CrossRefGoogle Scholar
  13. Maat N, Kraan C, Oost WA (1991) The roughness of wind waves. Boundary-Layer Meteorol 54:89–103. doi: 10.1007/BF00119414 CrossRefGoogle Scholar
  14. Neumann G (1953) On ocean wave spectra and a new method of forecasting wind-generated sea. Beach Erosion Board, Washington. Tech Mem no. 43 (Dec)Google Scholar
  15. Neumann T, Nolopp K (2007) Three years of operation of far offshore measurements at FINO1. DEWI Mag 30:42–46Google Scholar
  16. Oost WA, Komen GJ, Jacobs CMJ, Van Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorol 103:409–438. doi: 10.1023/A:1014913624535 CrossRefGoogle Scholar
  17. Outzen O, Herklotz K, Heinrich H, Lefebvre C (2008) Extreme waves at FINO1 research platform caused by storm “Tilo” on 9 November 2007. DEWI Mag 33:17–23Google Scholar
  18. Panchang V, Zhao L, Demirbilek Z (1999) Estimation of extreme wave heights using GEOSAT measurements. Ocean Eng 26:205–225. doi: 10.1016/S0029-8018(97)10026-9 CrossRefGoogle Scholar
  19. Roll HU (1952) Über Größenunterschiede der Meereswellen bei Warm-und Kaltluft. Dtsch Hydrogr Z 5:111–114. doi: 10.1007/BF02019402 CrossRefGoogle Scholar
  20. Sjöblom A, Smedman A-S (2003) Vertical structure in the marine atmospheric boundary layer and its implication for the internal dissipation method. Boundary-Layer Meteorol 109:1–25. doi: 10.1023/A:1025407109324 CrossRefGoogle Scholar
  21. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad Publ, Dordrecht, 666 ppGoogle Scholar
  22. Sverdrup HU, Munk WH (1947) Wind, sea and swell: Theory of relations for forecasting. Hydrogr. Off. Publ., No. 601Google Scholar
  23. Toba Y (1973) Local balance in the air–sea boundary process III. On the spectrum of wind waves. J Oceanogr Soc Jpn 29:209–220. doi: 10.1007/BF02108528 CrossRefGoogle Scholar
  24. Toba Y (1978) Stochastic form of the growth of wind waves in a single parameter representation with physical implications. J Phys Oceanogr 8:494–507. doi: 10.1175/1520-0485(1978)008<0494:SFOTGO>2.0.CO;2 CrossRefGoogle Scholar
  25. Weisse R, Günther H (2007) Wave climate and long-term changes fort he Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn 57:161–172. doi: 10.1007/s10236-006-0094-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Meteorology and Climate Research, Atmospheric Environmental ResearchForschungszentrum Karlsruhe GmbHGarmisch-PartenkirchenGermany
  2. 2.KEMA Consulting GmbHBonnGermany

Personalised recommendations