Ocean Dynamics

, 59:385 | Cite as

The subsurface of tidal-flat sediments as a model for the deep biosphere

  • Bert EngelenEmail author
  • Heribert Cypionka


Subsurface sediments of tidal flats and the marine deep biosphere share several features. Although on different scales in time and space, geochemical profiles and microbial successions follow the same trends. Microbial activities are governed by the availability of electron acceptors and the quality of electron donors. Two deep-biosphere sites and a shallow site from a German North Sea tidal flat were exemplarily chosen to compare geochemical settings and microbiological features. At all sites, microbial abundance was elevated at sulfate–methane transition zones. The known discrepancy between cultivation-based and molecular diversity assessments is observed, but similar microbial community compositions are found with each of the approaches at deep and shallow sites. These findings lead to the conclusion that we are presently unable to draw a cutting line between the shallow and the deep subsurface. Rather, there appears to exist only one “subsurface biosphere” with gradual differences. Therefore, tidal flats serve as an excellent model to perform microbiological experiments and to test novel techniques before applying them to much deeper and older samples.


Shallow subsurface Deep subsurface Geochemical profiles Microbial abundance Microbial diversity Cultivation 



We thank the scientific party of ODP Leg 201 and IODP Exp. 301 for collecting samples from the deep-biosphere and H. Nicolai, A. Bartholomä, M. Wilsenack, for assistance during sediment coring on the tidal flats. J. Köster, R. Wilms, B. Köpke, J. Süß, A. Batzke and K. Ziegelmüller are thanked for discussions and experimental work. This study was conducted in the frame of ODP, IODP and the research group on “BioGeoChemistry of Tidal Flats”—all funded by the “Deutsche Forschungsgemeinschaft, DFG”.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  2. Barnes SP, Bradbrook SD, Cragg BA, Marchesi JR, Weightman AJ, Fry JC, Parkes RJ (1998) Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol J 15:67–83CrossRefGoogle Scholar
  3. Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24:261–273 doi: 10.1080/01490450701456453 CrossRefGoogle Scholar
  4. Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack HJ (2008a) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal. Estuar Coast Shelf Sci 79:307–316 doi: 10.1016/j.ecss.2008.04.007 CrossRefGoogle Scholar
  5. Beck M, Dellwig O, Schnetger B, Brumsack HJ (2008b) Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochim Cosmochim Acta 72:2822–2840 doi: 10.1016/j.gca.2008.04.013 CrossRefGoogle Scholar
  6. Beck M, Köster J, Engelen B, Holstein JM, Gittel A, Könneke M, Riedel T, Wirtz K, Cypionka H, Rullkötter J, Brumsack H-J (2009) Deep pore water profiles reflect enhanced microbial activity towards tidal flat margins. Ocean Dyn (this issue)Google Scholar
  7. Biddle JF, House CH, Brenchley JE (2005) Enrichment and cultivation of microorganisms from sediment from the slope of the Peru Trench (ODP Site 1230). Proc ODP, Sci Results, 201 [Online]. Available from:
  8. Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M (2006a) Nutrient release from an exposed intertidal sand flat. Mar Ecol Prog Ser 316:35–51 doi: 10.3354/meps316035 CrossRefGoogle Scholar
  9. Billerbeck M, Werner U, Polerecky L, Walpersdorf E, deBeer D, Huettel M (2006b) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76 doi: 10.3354/meps326061 CrossRefGoogle Scholar
  10. Böttcher ME, Rusch A, Höpner T, Brumsack HJ (1997) Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (southern North Sea): Results from loading experiments. Isotopes Environ Health Stud 33:109–129 doi: 10.1080/10256019708036345 CrossRefGoogle Scholar
  11. Böttcher ME, Oelschlager B, Höpner T, Brumsack HJ, Rullkotter J (1998) Sulfate reduction related to the early diagenetic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (C-13, S-34,O-18) and other geochemical results. Org Geochem 29:1517–1530 doi: 10.1016/S0146-6380(98)00124-7 CrossRefGoogle Scholar
  12. Böttcher ME, Hespenheide B, Llobet-Brossa E, Beardsley C, Larsen O, Schramm A, Wieland A, Böttcher G, Berninger UG, Amann R (2000) The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont Shelf Res 20:1749–1769 doi: 10.1016/S0278-4343(00)00046-7 CrossRefGoogle Scholar
  13. Chang TS, Flemming BW, Tilch E, Bartholomä A, Wöstmann R (2006) Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential. Facies 52:329–340 doi: 10.1007/s10347-006-0080-2 CrossRefGoogle Scholar
  14. Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410 doi: 10.1126/science.1071893 CrossRefGoogle Scholar
  15. Cragg BA, Parkes RJ, Fry JC, Weightman AJ, Rochelle PA, Maxwell JR (1996) Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet Sci Lett 139:497–507 doi: 10.1016/0012-821X(95)00246-9 CrossRefGoogle Scholar
  16. D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070 doi: 10.1126/science.1064878 CrossRefGoogle Scholar
  17. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221 doi: 10.1126/science.1101155 CrossRefGoogle Scholar
  18. DeLong EF (2004) Microbial Life Breathes Deep. Science 306:2198–2200 doi: 10.1126/science.1107241 CrossRefGoogle Scholar
  19. Engelen B, Ziegelmüller K, Wolf L, Köpke B, Gittel A, Cypionka H, Treude T, Nakagawa S, Inagaki F, Lever MA, Steinsbu BO (2008) Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiol J 25:56–66 doi: 10.1080/01490450701829006 CrossRefGoogle Scholar
  20. Freese E, Köster J, Rullkötter J (2008) Origin and composition of organic matter in tidal flat sediments from the German Wadden Sea. Org Geochem 39:820–829 doi: 10.1016/j.orggeochem.2008.04.023 CrossRefGoogle Scholar
  21. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090 doi: 10.1016/0016-7037(79)90095-4 CrossRefGoogle Scholar
  22. Gittel A, Mußmann M, Sass H, Cypionka H, Könneke M (2008) Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Environ Microbiol 10:2645–2658 doi: 10.1111/j.1462-2920.2008.01686.x CrossRefGoogle Scholar
  23. Inagaki F, Takai K, Komatsu T, Kanamatsu T, Fujioka K, Horikoshi K (2001) Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5:385–392 doi: 10.1007/s007920100211 CrossRefGoogle Scholar
  24. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235 doi: 10.1128/AEM.69.12.7224-7235.2003 CrossRefGoogle Scholar
  25. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820 doi: 10.1073/pnas.0511033103 CrossRefGoogle Scholar
  26. Jørgensen BB (1982) Mineralization of organic-matter in the Sea Bed—the role of sulfate reduction. Nature 296:643–645 doi: 10.1038/296643a0 CrossRefGoogle Scholar
  27. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129 doi: 10.1126/science.1070633 CrossRefGoogle Scholar
  28. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830 doi: 10.1128/AEM.71.12.7819-7830.2005 CrossRefGoogle Scholar
  29. Kormas KA, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125 doi: 10.1016/S0168-6496(03)00128-4 CrossRefGoogle Scholar
  30. Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature. doi: 10.1038/nature07174
  31. Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A, Meyer RL, Grotzchel S, Rossello-Mora R, Amann R (2002) Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat Microb Ecol 29:211–226 doi: 10.3354/ame029211 CrossRefGoogle Scholar
  32. Marchesi JR, Weightman AJ, Cragg BA, Parkes RJ, Fry JC (2001) Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol 34:221–228 doi: 10.1111/j.1574-6941.2001.tb00773.x CrossRefGoogle Scholar
  33. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69:3311–3316 doi: 10.1128/AEM.69.6.3311-3316.2003 CrossRefGoogle Scholar
  34. Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287 doi: 10.1111/j.1462-2920.2004.00568.x CrossRefGoogle Scholar
  35. Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413 doi: 10.1038/371410a0 CrossRefGoogle Scholar
  36. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28 doi: 10.1007/PL00010971 CrossRefGoogle Scholar
  37. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394 doi: 10.1038/nature03796 CrossRefGoogle Scholar
  38. Poremba K, Tillmann U, Hesse KJ (1999) Tidal impact on planktonic primary and bacterial production in the German Wadden Sea. Helgol Mar Res 53:19–27 doi: 10.1007/PL00012133 CrossRefGoogle Scholar
  39. Roussel EG, Bonavita MAC, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046–1046 doi: 10.1126/science.1154545 CrossRefGoogle Scholar
  40. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160 doi: 10.1016/S0167-7012(01)00319-0 CrossRefGoogle Scholar
  41. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes JR, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864 doi: 10.1038/nature03302 CrossRefGoogle Scholar
  42. Suess E (1980) Particulate organic carbon flux in the oceans; surface productivity and oxygen utilization. Nature 288:260–263 doi: 10.1038/288260a0 CrossRefGoogle Scholar
  43. Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121 doi: 10.1016/j.femsec.2004.07.010 CrossRefGoogle Scholar
  44. Süß J, Schubert K, Sass H, Cypionka H, Overmann J, Engelen B (2006) Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environ Microbiol 8:1753–1763 doi: 10.1111/j.1462-2920.2006.01058.x CrossRefGoogle Scholar
  45. Süß J, Herrmann K, Seidel M, Cypionka H, Engelen B, Sass H (2008) Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microb Ecol 55:371–383 doi: 10.1007/s00248-007-9282-6 CrossRefGoogle Scholar
  46. Teske A (2006) Microbial communities of deep marine subsurface sediments: molecular and cultivation surveys. Geomicrobiol J 23:357–368 doi: 10.1080/01490450600875613 CrossRefGoogle Scholar
  47. Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18 doi: 10.1038/ismej.2007.90 CrossRefGoogle Scholar
  48. Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367 doi: 10.1016/j.femsec.2004.02.009 CrossRefGoogle Scholar
  49. van Beusekom JEE, de Jonge VN (2002) Long-term changes in Wadden Sea nutrient cycles: importance of organic matter import from the North Sea. Hydrobiol 475:185–194 doi: 10.1023/A:1020361124656 CrossRefGoogle Scholar
  50. Volkman JK, Rohjans D, Rullkotter J, Scholz-Bottcher BM, Liebezeit G (2000) Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Cont Shelf Res 20:1139–1158 doi: 10.1016/S0278-4343(00)00016-9 CrossRefGoogle Scholar
  51. Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ, Weightman AJ (2007) Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiol Ecol 62:78–89 doi: 10.1111/j.1574–6941.2007.00372.x CrossRefGoogle Scholar
  52. Whelan JK, Oremland R, Tarafa M, Smith R, Howarth R, Lee C (1986) Evidence for sulfate-reducing and methane-producing microorganisms in sediments from Site-618, Site-619, and Site-622. Initial Rep Deep Sea Drill Proj 96:767–775Google Scholar
  53. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583 doi: 10.1073/pnas.95.12.6578 CrossRefGoogle Scholar
  54. Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006a) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719 doi: 10.1111/j.1462-2920.2005.00949.x CrossRefGoogle Scholar
  55. Wilms R, Sass H, Köpke B, Köster H, Cypionka H, Engelen B (2006b) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764 doi: 10.1128/AEM.72.4.2756-2764.2006 CrossRefGoogle Scholar
  56. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621 doi: 10.1111/j.1574-6941.2006.00225.x CrossRefGoogle Scholar
  57. Ziebis W, Huettel M, Forster S (1996) Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar Ecol Prog Ser 140:227–237 doi: 10.3354/meps140227 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Chemistry and Biology of the Marine EnvironmentCarl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations