Ocean Dynamics

, Volume 58, Issue 5–6, pp 429–440 | Cite as

Tsunami simulations on several scales

Comparison of approaches with unstructured meshes and nested grids
  • Sven HarigEmail author
  • Chaeroni
  • Widodo S. Pranowo
  • Jörn Behrens


The tsunami event generated by the great Sumatra–Andaman earthquake on 26 December 2004 was simulated with the recently developed model TsunAWI. The model is based on the finite element method, which allows for a very flexible discretization of the model domain. This is demonstrated by a triangulation of the whole Indian Ocean with a resolution of about 14 km in the deep ocean but a considerably higher resolution of about 500 m in the coastal area. A special focus is put on the Banda Aceh region in the Northern tip of Sumatra. This area was heavily hit by the tsunami and the highest resolution in this area is about 40 m in order to include inundation processes in the model simulation. We compare model results to tide gauge data from all around the Indian Ocean, to satellite altimetry, and field measurements of flow depth in selected locations of the Aceh region. Furthermore, we compare the model results of TsunAWI to the results of a nested grid model (TUNAMI-N3) with the same initial conditions and identical bathymetry and topography in the Aceh region. It turns out that TsunAWI gives accurate estimates of arrival times in distant locations and in the same mesh gives good inundation results when compared to field measurements and nested grid results.


Tsunami Numerical modeling Finite element method Unstructured meshes Nested grids Shallow water equations Model comparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammon JC, Ji C, Thio H, Robinson D, Ni S, Hjorleifsdottir V, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308:1133–1139CrossRefGoogle Scholar
  2. Arcement Jr GJ, Schneider VR (1984) Guide for selecting manning’s roughness coefficients for natural channels and flood plains. Technical report, US Department of Transportation. Federal Highways Administration Reports no. FHWA-TS-84-204, 62 pGoogle Scholar
  3. Banerjee P, Pollitz FF, Nagarajan B, Bürgmann R (2007) Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seismol Soc Am 97(1A):S86–S102CrossRefGoogle Scholar
  4. Behrens J (2008) TsunAWI—unstructured mesh finite element model for the computation of tsunami scenarios with inundation. In: Habip M (ed) Proceedings of NAFEMS seminar: simulation of complex flows (CFD)—applications and trends, number ISBN 978-1-874376-33-0. NAFEMS Contact DACH & Nordic Countries, Bernau, pp 6–1 ffGoogle Scholar
  5. Behrens J, Androsov A, Braune S, Danilov S, Harig S, Schröter J, Sein DV, Sidorenko D, Startseva O, Taguchi E (2007) TsunAWI technical documentation part I: mathematical, numerical and implementation concepts. Tsunami Project Documentation No. 004. Alfred-Wegener-Institut, BremerhavenGoogle Scholar
  6. Borrero JC, Synolakis CE, Fritz H (2006) Northwest Sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthq Spectra 22(S3):S93–S104CrossRefGoogle Scholar
  7. Danilov S, Kivman G, Schröter J (2004) A finite element ocean model: principles and evaluation. Ocean Model 6(2):125–150CrossRefGoogle Scholar
  8. Frey WH, Field DA (1991) Mesh relaxation: a new technique for improving triangulations. Int J Numer Methods Eng 31:1121–1133CrossRefGoogle Scholar
  9. Furumoto AS, Tatehata H, Morioko C (1999) Japanese tsunami warning system. Sci Tsunami Hazards 17:85–105Google Scholar
  10. The General Bathymetric Chart of the Oceans (GEBCO) (2008) Webpage
  11. Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Asce M, Watts P (2007) Source constraints and model simulation of the December 2006, 2004, Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 133:414–428CrossRefGoogle Scholar
  12. Geist EL, Titov V, Arcas D, Pollitz FF, Bilek SL (2007) Implications of the 26 December 2004 Sumatra–Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes. Bull Seismol Soc Am 97:S249–S270CrossRefGoogle Scholar
  13. Hayashi Y (2008) Extracting the 2004 Indian Ocean tsunami signals from sea surface height data observed by satellite altimetry. J Geophys Res 113, C01001:9Google Scholar
  14. Hanert E, LeRoux DY, Legat V, Deleersnijder E (2005) An efficient eulerian finite element method for the shallow water equations. Ocean Model 10:115–136CrossRefGoogle Scholar
  15. Hirata K, Satake K, Tanioka Y, Kuragano T, Hasegawa Y, Hayashi Y, Hamada N (2006) The 2004 Indian Ocean tsunami: tsunami source model from satellite altimetry. Earth Planets Space 58:195–201Google Scholar
  16. Imamura F, Yalciner AC, Ozyurt G (2006) Tsunami modelling manual. AprilGoogle Scholar
  17. Jaffe BE, Borrero JC, Prasetya GS, Peters R, McAdoo B, Gelfenbaum G, Morton R, Ruggiero P, Higman B, Dengler L, Eeri M, Hidayat R, Kingsley E, Kongko W, Lukijanto, Moore A, Titov V, Yulianto E (2006) Northwest Sumatra and offshore islands field survey after the December 2004 Indian Ocean tsunami. Earthq Spectra 22(S3):S105–S135CrossRefGoogle Scholar
  18. Kongko W (2007) Investigation on tsunami run-up in Dec. 26 2004 Indian ocean earthquake. In: Presentation on the international workshop on recent developments in tsunami modeling, Bremerhaven, 25–27 April 2007Google Scholar
  19. Kongko W, Istiyanto DC, Irwandi I (2006) Tsunami modeling and field observations of December 26 2004 Indian ocean earthquake. Technical report, Coastal Dynamic Research Center, BPPT IndonesiaGoogle Scholar
  20. Kowalik Z, Knight W, Logan T, Whitmore P (2005). Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci Tsunami Hazards 23:40–56Google Scholar
  21. Kowalik Z, Knight W, Logan T, Whitmore P (2007) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:379–393CrossRefGoogle Scholar
  22. Le Roux DY, Lin CA (1998) Finite elemens for shallow-water equation ocean models. Mon Weather Rev 126(7):1931–1951CrossRefGoogle Scholar
  23. Lynett PJ, Wu T-R, Liu PL-F (2002) Modeling wave runup with depth-integrated equations. Coast Eng 46:89–107CrossRefGoogle Scholar
  24. McAdoo BG, Richardson N, Borrero J (2007) Inundation distances and run-up measurements from ASTER, quickbird and SRTM data, aceh coast, Indonesia. Int J Remote Sens 28:2961–2975CrossRefGoogle Scholar
  25. NOA (2008) Tsunami event – December 26, 2004 Indonesia (Sumatra). Webpage
  26. Nagarajan B, Suresh I, Sundar D, Sharma R, Lal AK, Neetu S, Shenoi SSC, Shetye SR, Shankar D (2006) The great tsunami of 26 December 2004: a description based on tide-gauge data from the Indian subcontinent and surrounding areas. Earth Planets Space 58:211–215Google Scholar
  27. Okada Y (1985) Surface deformation due to shear and tenside faults in a half space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  28. Park, J, Anderson K, Aster R, Butler R, Lay T, Simpson D (2005) Global seismographic network records the great Sumatra–Andaman earthquake. EOS 86:57, 60–61Google Scholar
  29. Piatanesi A, Tinti S, Bortolucci E (1999) Finite-element simulations of the 28 December 1908 Messina straits (Southern Italy) tsunami. Phys Chem Earth (A) 24:145–150CrossRefGoogle Scholar
  30. Rabinovich AB, Thomson RE (2007) The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the world ocean part 1. Indian ocean and south Africa. Pure Appl Geophys 164:261–308Google Scholar
  31. Shewchuk JR (1996) Triangle: engineering a 2d quality mesh generator and delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Heidelberg, pp 203–222CrossRefGoogle Scholar
  32. Stacey MW, Nowak ZP (1995) A numerical model of the circulation in Knight inlet, British Columbia, Canada. J Phys Oceanogr 25:1037–1062CrossRefGoogle Scholar
  33. SRT (2007) Shuttle radar topography mission X-SAR / SRTM. Webpage
  34. Tinti S, Gavagni I (1995) A smoothing algorithm to enhance finite-element tsunami modelling: an application to the 5 February 1783 calabrian case, Italy. Nat Hazards 12:161–197CrossRefGoogle Scholar
  35. Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model. Technical Report 1927, NOAA Technical Memorandum ERL PMEL-112Google Scholar
  36. Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, Gonzalez FI (2005) The global reach of the December 2004 Sumatra tsunami. Science 309:2045–2048CrossRefGoogle Scholar
  37. Tanioka Y, Yudhicara, Kususose T, Kathiroli S, Nishimura Y, Iwasaki S-I, Satake K (2006) Rupture process of the 2004 great Sumatra–Andaman earthquake estimated from tsunami waveforms. Earth Planets Space 58:203–209Google Scholar
  38. Walters RA (2006) Design considerations for a finite element coastal ocean model. Ocean Model 15:90–100CrossRefGoogle Scholar
  39. Walters RA, Goff J (2003) Assessing tsunami hazard along the New Zealand coast. Sci Tsunami Hazards 21:137–153Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sven Harig
    • 1
    Email author
  • Chaeroni
    • 2
  • Widodo S. Pranowo
    • 1
  • Jörn Behrens
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine Research (AWI)BremerhavenGermany
  2. 2.Coastal Dynamic Research Center BPPTJogyakartaIndonesia

Personalised recommendations