Ocean Dynamics

, Volume 58, Issue 3–4, pp 155–168 | Cite as

Regional and global effects of southern ocean constraints in a global model

  • Michael P. Schodlok
  • Manfred Wenzel
  • Jens G. Schröter
  • Hartmut H. Hellmer


Global ocean circulation models do not usually take high-latitude processes into account in an adequate form due to a limited model domain or insufficient resolution. Without the processes in key areas contributing to the lower part of the global thermohaline circulation, the characteristics and flow of deep and bottom waters often remain unrealistic in these models. In this study, various sections of the Bremerhaven Regional Ice Ocean Simulation model results are combined with a global inverse model by using temperature, salinity, and velocity constraints for the Hamburg Large Scale Geostrophic ocean general circulation model. The differences between the global model with and without additional constraints from the regional model demonstrate that the Weddell Sea circulation exerts a significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. The influence of the Ross Sea is found to be less important in terms of global influences. However, regional changes in the Pacific sector of the Southern Ocean are found to be of Ross Sea origin. The additional constraints change the hydrographic conditions of the global model in the vicinity of the Antarctic Circumpolar Current in such a way that transport values, e.g., in Drake Passage no longer need to be prescribed to obtain observed transports. These changes not only improve the path and transport of the Antarctic Circumpolar Current but affect the meso- and large-scale circulation. With a higher (lower) mean Drake Passage transport, the mean Weddell Gyre transport is lower (higher). Furthermore, an increase (decrease) in the Antarctic Circumpolar Current leads to a decrease (increase) of the circum-Australian flow, i.e., a decrease (increase) of the Indonesian Throughflow.


Weddell Sea Ross Sea Numerical modelling State estimation Global ocean Adjoint method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assmann KM, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dyn 55:68–87. doi:10.1017/S10236-004-0106-7 CrossRefGoogle Scholar
  2. Assmann K, Hellmer HH, Beckmann A (2003) Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarct Sci 15(1):3–11. doi:10.1017/S0954102003001007 CrossRefGoogle Scholar
  3. Beckmann A, Hellmer HH, Timmermann R (1999) A numerical model of the Weddell Sea: large-scale circulation and water mass distribution. J Geophys Res 104:23374–23391CrossRefGoogle Scholar
  4. Carmack EC (1977) Water characteristics of the Southern Ocean south of the Polar Front. In: Angel M (ed) A voyage of discovery, George Deacon 70th anniversary volume. Pergamon, Oxford, pp 15–41Google Scholar
  5. Conkright ME, Locarnini RA, Garcia HE, OBrien TD, Boyer TP, Stephens C, Antonov JI (2002) World ocean atlas 2001: objective analysis, data statistics and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Springs, 17 ppGoogle Scholar
  6. Emery WJ, Meincke J (1986) Global water masses: summary and review. Oceanol Acta 9:383–391Google Scholar
  7. Ganachaud A, Wunsch C, Marotzke J, Toole J (2000) Meridional overturning and large-scale circulation of the Indian Ocean. J Geophys Res 105:26117–26134CrossRefGoogle Scholar
  8. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277CrossRefGoogle Scholar
  9. Goose H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355CrossRefGoogle Scholar
  10. Gordon AL, Dwi Susanto R, Ffield A (1999) Throughflow within Makassar Strait. Geophys Res Lett 26:3325–3328CrossRefGoogle Scholar
  11. Gordon AL, Zambianchi E, Orsi A, Visbeck M, Giulivi CF, Whitworth III T, Spezie G (2004) Energetic plumes over the western Ross Sea continental slope. Geophys Res Lett 31. doi:10.1029/2004GL020785
  12. Gouretski VV, Koltermann KP (2004) WOCE global hydrographic climatology. A Technical Report, Berichte des Bundesamtes für Seeschiffahrt und Hydrograhy, No. 35, 50 pp + 2 CD-ROmGoogle Scholar
  13. von Gyldenfeldt AB, Fahrbach E, Garcia M, Schröder M (2002) Flow variability at the tip of the Antarctic Peninsula. Deep Sea Res II 49:4743–4766CrossRefGoogle Scholar
  14. Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat-transport. Deep-Sea Res Part A 29:339–359CrossRefGoogle Scholar
  15. Hellmer HH, Schodlok MP, Wenzel M, Schröter JG (2005) On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model. Ocean Dyn 55(2):88–99. doi:10.1007/s10236-005-0112-4 CrossRefGoogle Scholar
  16. Holfort J, Siedler G (2001) The meridional oceanic transports of heat and nutrients in the South Atlantic. J Phys Oceanogr 31:5–29CrossRefGoogle Scholar
  17. Ivchenko VO, Zalensy VB, Drinkwater MR (2004) Can the equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies? Geophys Res Lett 31. doi:10.1029/2004GL020472
  18. Jacobs SS, Amos AF, Bruchhausen PM (1970) Ross Sea oceanography and Antarctic bottom water formation. Deep Sea Res 17:935–962Google Scholar
  19. Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th century. Science 297:386–389CrossRefGoogle Scholar
  20. Jia Y (2003) Ocean heat transport and its relationship to ocean circulation in the CMIP coupled models. Clim Dyn 20:153–174Google Scholar
  21. Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the prime meridian. Deep Sea Res II 52:513–528. doi:10.1016/j.dsr2.2004.12.015 CrossRefGoogle Scholar
  22. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592 CrossRefGoogle Scholar
  23. Locarnini RA, Whitworth III T, Nowlin Jr, WD (1993) The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water. J Mar Res 51:135–153CrossRefGoogle Scholar
  24. Losch M, Heimbach P (2007) Adjoint sensitivity of an ocean general circulation model to bottom topography. J Phys Oceanogr 37:377–393. doi:10.1175/JPO3017.1 CrossRefGoogle Scholar
  25. Macdonald AM (1998) The global ocean circulation: a hydrographic estimate and regional analysis. Prog Oceanogr 41:281–382CrossRefGoogle Scholar
  26. Maier-Reimer E, Mikolajewicz U (1991) The Hamburg large scale geostrophic ocean general circulation model (Cycle 1). Tech Rep No. 2. Deutsches Klimarechenzentrum, HamburgGoogle Scholar
  27. Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23:731–757CrossRefGoogle Scholar
  28. Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 1: annual mean response. J Climate 4:785–818CrossRefGoogle Scholar
  29. Meredith MP, Woodsworth PL, Hughes CW, Stepanov V (2004) Changes in the ocean transport through Drake passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys Res Lett 31:L212305. doi:10.1029/2004GL021169 CrossRefGoogle Scholar
  30. Meyers G (1996) Variation of Indonesian throughflow and the El Niño—southern oscillation. J Geophys Res 101:12255–12263CrossRefGoogle Scholar
  31. Mosby H (1934) The water of the Atlantic Ocean. Scientific results of the Norwegian Antarctic expedition 1927–1928, vol 11. Oslo, Norway, 131 ppGoogle Scholar
  32. Naveira Garabato AC, McDonagh EL, Stevens DP, Heywood KJ, Sanders RJ (2002) On the export of Antarctic bottom water from the Weddell Sea. Deep Sea Res II 49:4715–4742CrossRefGoogle Scholar
  33. Olbers D, Wübber C (1991) The role of wind and buoyancy forcing of the Antarctic circumpolar current. In: Latif M (ed) Strategies for future climate research. MPI, Hamburg, pp 161–192Google Scholar
  34. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic bottom water. Prog Oceanogr 43:55–109CrossRefGoogle Scholar
  35. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An impoved in situ and satellite SST analysis for climate. J Climate 15:1609–1625CrossRefGoogle Scholar
  36. Rintoul SR (1998) On the origin and influence of Adelie land bottom water. In: Jacobs SS, Weiss R (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic Research Series, vol 75. AGU, Washington, DC, pp 151–171Google Scholar
  37. Rintoul SR, Hughes C, Olbers D (2001) The antarctic circumpolar current system. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic, New York, pp 271–302CrossRefGoogle Scholar
  38. Rintoul SR (2007) Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys Res Lett 34:L06606CrossRefGoogle Scholar
  39. Schodlok MP, Hellmer HH, Beckmann A (2002) On the transport, variability, and origin of dense water masses crossing the South Scotia Ridge. Deep Sea Res II 49:4807–4825CrossRefGoogle Scholar
  40. Schodlok MP, Rodehacke CB, Hellmer HH, Beckmann A (2001) On the origin of the deep CFC maximun in the eastern Weddell Sea—numerical model results. Geophys Res Lett 28:2859–2862CrossRefGoogle Scholar
  41. Sloyan BM, Rintoul SR (2001) The Southern Ocean limb of the global deep overturning circulation. J Phys Oceanogr 31:143–173CrossRefGoogle Scholar
  42. Sloyan BM, Schröter J (2001) Correlation of ocean mass and temperature fluxes among hydropgraphic sections in the southern oceans. Geophys Res Lett 28:2049–2052CrossRefGoogle Scholar
  43. Stepanov VN, Hughes CW (2006) Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. J Geophys Res 111:C12002. doi:10.1029/2005JC003450 CrossRefGoogle Scholar
  44. Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560CrossRefGoogle Scholar
  45. Wenzel M, Schröter J, Olbers D (2001) The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog Oceanogr 48:73–119CrossRefGoogle Scholar
  46. Wenzel M, Schröter J (2002) Assimilation of TOPEX/POSEIDON data in a global ocean model: differences in 1995–1996. Phys Chem Earth 27:1433–1437Google Scholar
  47. Wenzel M, Schröter J (2007) The global ocean mass budget in 1993–2003 estimated from sea level change. J Phys Oceanogr 55:203–213. doi:10.1175/JPO3007.1 CrossRefGoogle Scholar
  48. Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036 doi:10.1029/2003JC002260 CrossRefGoogle Scholar
  49. Whitworth III T, Nowlin Jr WD, Worley SJ (1982) The net transport of the Antarctic circumpolar current through Drake passage. J Phys Oceanogr 12:960–971CrossRefGoogle Scholar
  50. Whitworth III T, Orsi AH, Kim S-J, Nowlin Jr WD, Locarnini RA (1998) Water masses and mixing near the Antarctic slope front. In: Jacobs SS, Weiss R (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic research series, vol 75. AGU, Washington, DC, pp 1–27Google Scholar
  51. Zhang KQ, Marotzke J (1999) The importance of open-boundary estimation for an Indian Ocean GCM-data synthesis. J Mar Res 57:305–334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michael P. Schodlok
    • 1
    • 2
  • Manfred Wenzel
    • 1
  • Jens G. Schröter
    • 1
  • Hartmut H. Hellmer
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations