Ocean Dynamics

, Volume 57, Issue 2, pp 75–89

Spatial and temporal structure of the Denmark Strait Overflow revealed by acoustic observations

  • Andreas Macrander
  • Rolf H. Käse
  • Uwe Send
  • Héðinn Valdimarsson
  • Steingrímur Jónsson
Original paper

Abstract

In spite of the fundamental role the Atlantic Meridional Overturning Circulation (AMOC) plays for global climate stability, no direct current measurement of the Denmark Strait Overflow, which is the densest part of the AMOC, has been available until recently that resolve the cross-stream structure at the sill for long periods. Since 1999, an array of bottom-mounted acoustic instruments measuring current velocity and bottom-to-surface acoustic travel times was deployed at the sill. Here, the optimization of the array configuration based on a numerical overflow model is discussed. The simulation proves that more than 80% of the dense water transport variability is captured by two to three acoustic current profilers (ADCPs). The results are compared with time series from ADCPs and Inverted Echo Sounders deployed from 1999 to 2003, confirming that the dense overflow plume can be reliably measured by bottom-mounted instruments and that the overflow is largely geostrophically balanced at the sill.

Keywords

Denmark Strait Overflow Acoustic observations ADCP PIES Geostrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard K, Malmberg S-A (1978) Low frequency characteristics of the Denmark Strait overflow. ICES, CM 1978/C:47Google Scholar
  2. Bacon S (1998) Decadal variability in the outflow from the Nordic Seas to the deep Atlantic Ocean. Nature 394:871–874CrossRefGoogle Scholar
  3. Berwin R (2003a) TOPEX/POSEIDON sea surface height anomaly product user’s reference manual, version 2Google Scholar
  4. Berwin R (2003b) Jason-1 sea surface height anomaly product user’s reference manual, version 2Google Scholar
  5. Biastoch A, Käse RH, Stammer DB (2003) The sensitivity of the Greenland–Scotland overflow to forcing changes. J Phys Oceanogr 33:2307–2319CrossRefGoogle Scholar
  6. Borenäs K, Lundberg P (1986) Rotating hydraulics of flow in a parabolic channel. J Fluid Mech 167:309–326CrossRefGoogle Scholar
  7. Broersen PMT (2002) Automatic spectral analysis with time series models. IEEE Trans Instrum Meas 51(2):211–216CrossRefGoogle Scholar
  8. Dickson RR, Brown J (1994) The production of North Atlantic deep water: sources, rates and pathways. J Geophys Res 99:12319–12341CrossRefGoogle Scholar
  9. Dickson RR, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  10. Dickson B, Meincke J, Vassie I, Jungclaus J, Østerhus S (1999) Possible predictability in overflow from the Denmark Strait. Nature 397:243–246CrossRefGoogle Scholar
  11. Dietrich G, Kalle K, Krauß W, Siedler G (1975) Allgemeine meereskunde, 3rd edn. Bornträger-Verlag, Berlin, StuttgartGoogle Scholar
  12. Fofonoff NP (1985) Physical properties of seawater. J Geophys Res 90:3332–3342CrossRefGoogle Scholar
  13. Gill AE (1977) The hydraulics of rotating-channel flow. J Fluid Mech 80:641–671CrossRefGoogle Scholar
  14. Girton JB (2001) Dynamics of transport and variability in the Denmark Strait overflow. Ph.D. thesis, University of Washington, SeattleGoogle Scholar
  15. Girton JB, Sanford TB (2003) Descent and modification of the overflow plume in the Denmark Strait. J Phys Oceanogr 33(7):1351–1364CrossRefGoogle Scholar
  16. Girton JB, Sanford TB, Käse RH (2001) Synoptictions of the Denmark Strait overflow. Geophys Res Lett 28:1619–1622CrossRefGoogle Scholar
  17. Hansen B, Østerhus S (2000) North Atlantic–Nordic Seas exchanges. Prog Oceanogr 45:109–208CrossRefGoogle Scholar
  18. Hansen B, Turrell WR, Østerhus S (2001) Decreasing overflow from the Nordic Seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411:927–930. DOI 10.1038/35082034 CrossRefGoogle Scholar
  19. Høyer JL, Quadfasel D (2001) Detection of deep overflows with satellite altimetry. Geophys Res Lett 28(8):1611CrossRefGoogle Scholar
  20. Jónsson S (1999) The circulation in the northern part of the Denmark Strait and its variability. ICES CM, L:06, 9 ppGoogle Scholar
  21. Jónsson S, Valdimarsson H (2004a) A new path for the Denmark Strait overflow water from the Iceland Sea to Denmark Strait. Geophys Res Lett 31:L03305, DOI 10.1029/2003GL019214
  22. Jónsson S, Valdimarsson H (2004b) An ocean current over the continental slope northwest of Iceland carrying Denmark Strait overflow water from the Iceland Sea to Denmark Strait. ICES CM, 2004/N:04, 11 ppGoogle Scholar
  23. Käse RH (2006) A Riccati model for Denmark Strait overflow variability. Geophys Res Lett 33:L21S09. DOI 10.1029/2006GL026915
  24. Käse RH, Oschlies A (2000) Flow through Denmark Strait. J Geophys Res 105(28):527–528, 546Google Scholar
  25. Käse RH, Girton JB, Sanford TB (2003) Structure and variability of the Denmark Strait overflow: model and observations. J Geophys Res 108(C6):3181CrossRefGoogle Scholar
  26. Killworth PD, McDonald NR (1993) Maximal reduced-gravity flux in rotating hydraulics. Deep-sea Res I(42):859–871Google Scholar
  27. Kösters F (2004) Denmark Strait overflow: comparing model results and hydraulic transport estimates. J Geophys Res 109:C10011, DOI 10.1029/2004JC002297
  28. Macrander A, Send U, Valdimarsson H, Jónsson S, Käse RH (2005) Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys Res Lett 32:L06606, DOI 10.1029/2004GL021463
  29. Mauritzen C (1996) Production of dense overflow waters feeding the North Atlantic across the Greenland–Scotland ridge: Part 1. Evidence for a revised circulation scheme. Deep-sea Res 43:769–806CrossRefGoogle Scholar
  30. McCartney M, Donohue K, Curry R, Mauritzen C, Bacon S (1998) Did the overflow from the Nordic Seas intensify in 1996–1997? Int WOCE Newsl 31:3–7Google Scholar
  31. Meinen CS, Watts DR (1998) Calibrating inverted echo sounders equipped with pressure sensors. J Atmos Ocean Technol 15(6):1339–1345CrossRefGoogle Scholar
  32. Nikolopoulos A, Borenäs K, Hietala R, Lundberg P (2003) Hydraulic estimates of Denmark Strait overflow. J Geophys Res 108(C3)Google Scholar
  33. Ross CK (1984) Temperature–salinity characteristics of the “overflow” water in Denmark Strait during “OVERFLOW ’73”. Rapp P-v Réun Cons Int Explor Mer 185:111–119Google Scholar
  34. Rudels B, Fahrbach E, Meincke J, Budéus G, Eriksson P (2002) The East Greenland current and its contribution to the Denmark Strait overflow. ICES J Mar Sci 59:1133–1154CrossRefGoogle Scholar
  35. Saunders PM (2001) The dense northern overflows. In: Siedler G (ed) Ocean circulation and climate. Int Geophys Ser (San Diego) 77:401–418Google Scholar
  36. Swift JH (1986) The arctic waters. In: Hurdle BG (ed) The Nordic Seas. Springer, Berlin Heidelberg New York, pp 124–153Google Scholar
  37. Whitehead JA (1998) Topographic control of oceanic flows in deep passages. Rev Geophys 36(3):423–440CrossRefGoogle Scholar
  38. Worthington LV (1969) An attempt to measure the volume transport of Norwegian Sea overflow water through the Denmark Strait. Deep-sea Res 16:421–432Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andreas Macrander
    • 1
    • 2
  • Rolf H. Käse
    • 2
    • 3
  • Uwe Send
    • 4
  • Héðinn Valdimarsson
    • 5
  • Steingrímur Jónsson
    • 6
    • 7
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany
  2. 2.IFM-GEOMARKielGermany
  3. 3.Institut für MeereskundeHamburgGermany
  4. 4.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA
  5. 5.Marine Research InstituteReykjavíkIceland
  6. 6.University of AkureyriAkureyriIceland
  7. 7.MRIReykjavíkIceland

Personalised recommendations