# Modelling the global ocean tides: modern insights from FES2004

- 2.6k Downloads
- 702 Citations

## Abstract

During the 1990s, a large number of new tidal atlases were developed, primarily to provide accurate tidal corrections for satellite altimetry applications. During this decade, the French tidal group (FTG), led by C. Le Provost, produced a series of finite element solutions (FES) tidal atlases, among which FES2004 is the latest release, computed from the tidal hydrodynamic equations and data assimilation. The aim of this paper is to review the state of the art of tidal modelling and the progress achieved during this past decade. The first sections summarise the general FTG approach to modelling the global tides. In the following sections, we introduce the FES2004 tidal atlas and validate the model against in situ and satellite data. We demonstrate the higher accuracy of the FES2004 release compared to earlier FES tidal atlases, and we recommend its use in tidal applications. The final section focuses on the new dissipation term added to the equations, which aims to account for the conversion of barotropic energy into internal tidal energy. There is a huge improvement in the hydrodynamic tidal solution and energy budget obtained when this term is taken into account.

## Keywords

Tidal atlas Finite element modelling FES2004 Data assimilation## Notes

### Acknowledgements

Numerical simulations of the hydrodynamic and assimilation codes were performed at the *Institut du Développement et des Ressources en Informatique Scientifique* computational centre (Paris, France). The authors wish to thank all the people who have collaborated in the development of the FES atlases during the past 15 years, including the tidal group of the T/P mission, and the *Centre National d’Etudes Spatiales* for its constant support. They also thank R. Morrow for her encouragement and help in correcting earlier drafts.

## References

- Accad Y, Pekeris CL (1978) Solution of the tidal equations for the M
_{2}and S_{2}tides in the world oceans from a knowledge of the tidal potential alone. Philos Trans R Soc Lond Ser A Math Phys Sci 290:235–266Google Scholar - Andersen OB, Egbert GD, Erofeeva SY, Ray RD (2006) Mapping nonlinear shallow-water tides: a look at the past and future (in press). DOI 10.007/s10236-006-0060-7
- Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32:L02610, DOI 10.1029/2004GL021668
- Bell TH (1975) Topographically generated internal waves in the open ocean. J Geophys Res 80:320–327Google Scholar
- Bennett AF (1990) Inverse methods for assessing ship-of-opportunity networks and estimating circulation and winds from tropical expendable bathythermograph data. J Geophys Res 95(C9):16111–16148Google Scholar
- Bennett AF, McIntosh PC (1982) Open ocean modelling as an inverse problem. J Phys Oceanogr 12:1004–1018CrossRefGoogle Scholar
- Carrère L (2003) Etude et modélisation de la réponse haute fréquence de l’Océan global aux forçages météorologiques. Ph.D. thesis, Université III Paul SabatierGoogle Scholar
- Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30(6):1275, DOI 10.1029/2002GL016473 CrossRefGoogle Scholar
- Carrère L, Le Provost C, Lyard F (2004) On the statistical stability of the M2 barotropic and baroclinic tidal characteristics from along-track TOPEX/Poseidon satellite altimetry analysis. J Geophys Res 109:C03033CrossRefGoogle Scholar
- Cartwright DE, Ray RD (1991) Energetics of global ocean tides from Geosat altimetry. J Geophys Res 96(C9):16897–16912Google Scholar
- Cartwright DE, Spencer R (1988) The tides of the Atlantic Ocean. Philos Trans R Soc Lond A 324:513–563Google Scholar
- Chabert d’Hières G, Le Provost C (1978) Atlas des composantes harmoniques de la marée dans la Manche. Ann Hydrogr 46:5–35Google Scholar
- Egbert G, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefGoogle Scholar
- Egbert GD, Ray RD (2001) Estimates of M2 tidal energy dissipation from Topex/Poseidon altimeter data. J Geophys Res 106:22475–22502CrossRefGoogle Scholar
- Egbert GD, Ray RD (2003) Deviation of long period tides from equilibrium: kinematics and geostrophy. J Phys Oceanogr 33:822–839CrossRefGoogle Scholar
- Egbert GD, Bennett AF, Foreman GG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99:24,821–24,852CrossRefGoogle Scholar
- Egbert GD, Ray RD, Bills BG (2004) Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res 109:C03003, DOI 10.1029/2003JC001973 CrossRefGoogle Scholar
- Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10:761–797Google Scholar
- Francis O, Mazzega P (1990) Global charts of ocean tide loading effects. J Geophys Res 95(C7):11411–11424Google Scholar
- Genco ML, Lyard F, Le Provost C (1994) The Oceanic tides in the South Atlantic Ocean. Ann Geophys 12:868–886CrossRefGoogle Scholar
- Greenberg D, Dupont F, Lyard F, Lynch DR, Werner FE (2006) Resolution issues in numerical models of Oceanic and coastal circulation. Cont Shelf Res (in press)Google Scholar
- Groves GW, Reynolds RW (1975) An orthogonalized convolution method of tide prediction. J Geophys Res 80:4131–4138CrossRefGoogle Scholar
- Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28:811–814CrossRefGoogle Scholar
- Le Provost C, Fornerino M (1985) Tidal spectroscopy of the English Channel with a numerical model. J Phys Oceanogr 15(8):1009–1031CrossRefGoogle Scholar
- Le Provost C, Lyard F (1998) Energetics of the
*M*_{2}barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Prog Oceanogr 40:37–52 (special issue on tidal science in honour of David E. Cartwright)CrossRefGoogle Scholar - Le Provost C, Vincent P (1986) Some tests of precision for a finite element model of ocean tides. J Comput Phys 65:273–291CrossRefGoogle Scholar
- Le Provost C, Poncet A, Rougier G (1981) Numerical modelling of the harmonic constituents of the tides—application to the English Channel. J Phys Oceanogr 11(8):1123–1138CrossRefGoogle Scholar
- Le Provost C, Lyard F, Molines JM (1991) Improving Ocean tides predictions by using additional semidiurnal constituents from spline approximation in the frequency domain. Geophys Res Lett 18(5):845–848Google Scholar
- Le Provost C, Bennett AF, Cartwright DE (1995) Ocean tides for and from TOPEX/POSEIDON. Science 267:639–642CrossRefGoogle Scholar
- Le Provost C, Lyard F, Genco ML, Rabilloud F (1998) A hydrodynamic ocean tide model improved by assimilation of a satellite altimeter-derived data set. J Geophys Res 103(C3):5513–5529CrossRefGoogle Scholar
- Lefevre F (2004) Modélisation des marées océaniques à l’échelle globale : assimilation de données in situ et altimétriques. Ph.D. thesis, Université III Paul SabatierGoogle Scholar
- Lefevre F, Lyard F, Le Provost C, Schrama EJO (2002) FES99: a global tide finite element solution assimilating tide gauge and altimetric information. Atmos Ocean Tech 19:1345–1356CrossRefGoogle Scholar
- Letellier T (2004) Etude des ondes de marée sur les plateaux continentaux. Ph.D. thesis, Université III Paul SabatierGoogle Scholar
- Lewellyn Smith SG, Young WR (2002) Conversion of the barotropic tide. J Phys Oceanogr 32:1554–1566CrossRefGoogle Scholar
- Lyard F (1999) Data assimilation in a wave equation: a variational representer approach for the Grenoble tidal model. J Comput Phys 149:1–31CrossRefGoogle Scholar
- Morozov E (1995) Semidiurnal internal wave global field. Deep-Sea Res Part 1 Oceanogr Res Pap 42:135–148CrossRefGoogle Scholar
- Munk WH, Cartwright DE (1966) Tidal spectroscopy and prediction. Philos Trans R Soc Lond A 259:533–581Google Scholar
- Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res Part 1 Oceanogr Res Pap 45:1977–2010CrossRefGoogle Scholar
- Ponchaut F, Lyard F, Le Provost C (2001) An analysis of the tidal signal in the WOCE Sea level dataset. J Atmos Ocean Technol 18:77–91CrossRefGoogle Scholar
- Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. NASA technical memorandum 209478. Goddard space flight centre, GreenbeltGoogle Scholar
- Ray RD, Egbert GD (2004) The global S1 tide. J Phys Oceanogr 34:1922–1935CrossRefGoogle Scholar
- Ray RD, Mitchum GT (1996) Surface manifestation of internal tides generated near Hawaii. Geophys Res Lett 23(16):2101–2104CrossRefGoogle Scholar
- Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910CrossRefGoogle Scholar
- Schrama E, Ray RD (1994) A preliminary tidal analysis of TOPEX/POSEIDON altimetry. J Geophys Res 99:24799–24808CrossRefGoogle Scholar
- Schwiderski EW (1980) Ocean tides, II, a hydrodynamic interpolation model. Mar Geod 3:219–255CrossRefGoogle Scholar
- Shum CK, Woodworth PL, Andersen OB, Egbert G, Francis O, King C, Klosko S, Le Provost C, Li X, Molines JM, Parke M, Ray R, Schlax M, Stammer D, Temey C, Vincent P, Wunsch C (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):25173–25194CrossRefGoogle Scholar
- Simmons H, St Laurent L, Jayne S, Weaver A (2004a) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263CrossRefGoogle Scholar
- Simmons H, Hallberg R, Arbic B (2004b) Internal wave generation in a global baroclinic tide model. Deep-Sea Res Part 2 Top Stud Oceanogr 51:3043–3068, DOI 10.1016/j.dsr2.2004.09.015 Google Scholar