Ocean Dynamics

, Volume 56, Issue 5–6, pp 416–429 | Cite as

Mapping nonlinear shallow-water tides: a look at the past and future

  • Ole B. Andersen
  • Gary D. Egbert
  • Svetlana Y. Erofeeva
  • Richard D. Ray
Original paper


Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M\(_4\) tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M\(_4\) can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems.


Tides Nonlinear tides Overtides Satellite altimetry 


  1. Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32:L02610CrossRefGoogle Scholar
  2. Andersen OB (1999) Shallow water tides on the northwest European shelf from TOPEX/POSEIDON altimetry. J Geophys Res 104:7729–7741CrossRefGoogle Scholar
  3. Andersen OB, Knudsen P (1997) Multi-satellite ocean tide modelling—the K\(_1\) constituent. Prog Oceanogr 40:197–216CrossRefGoogle Scholar
  4. Andersen OB, Woodworth PL, Flather RA (1995) Intercomparison of recent global ocean tide models. J Geophys Res 100(C12):25261–25282CrossRefGoogle Scholar
  5. Bennett AF (1992) Inverse methods in physical oceanography. Cambridge Univ. Press, p 346Google Scholar
  6. Cartwright DE (1968) A unified analysis of tides and surges round north and east Britain. Philos Trans R Soc Lond A 263:1–55Google Scholar
  7. Cartwright DE, Ray RD (1990) Oceanic tides from Geosat altimetry. J Geophys Res 95:3069–3090Google Scholar
  8. Cartwright DE, Zetler BD (1985) Pelagic tidal constants—2. Int Assoc Phys Sci Oceans 33:59 (Paris)Google Scholar
  9. Chabert d’Hières G, Le Provost C (1970) Determination des characteristiques des ondes harmoniques M2 et M4 dans la manche sur modele reduit hydraulique. C R Acad Sci A 270:1703–1706Google Scholar
  10. Chabert d’Hières G, Le Provost C (1976) On the use of an hydraulic model to study non linear tidal deformations in shallow waters: applications to the English Channel. Mem Soc R Sci Liege 6:113–124Google Scholar
  11. Chabert d’Hières G, Le Provost C (1979) Atlas des composantes harmoniques de la marée dans la Manche. Ann Hydrogr 6:5–36Google Scholar
  12. Davies AM (1986) A three-dimensional model of the northwest European shelf with application to the M\(_4\) tide. J Phys Oceanogr 16:797–813CrossRefGoogle Scholar
  13. Davies AM, Kwong SCM, Flather RA (1997) Formulation of a variable-function three-dimensional model, with applications to the M\(_2\) and M\(_4\) tide on the Northwest European continental shelf. Cont Shelf Res 17:165–204CrossRefGoogle Scholar
  14. Egbert GD, Bennett AF (1996) Data assimilation methods for ocean tides. In: Malanotte-Rizzoli P (ed) Modern approaches to data assimilation in ocean modeling. Elsevier, Amsterdam, pp 147–179Google Scholar
  15. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19:183–204CrossRefGoogle Scholar
  16. Egbert GD, Bennett AF, Foreman MGG (1994) Topex/Poseidon tides estimated using a global inverse model. J Geophys Res 99:24821–24852CrossRefGoogle Scholar
  17. Flather RA (1976) A tidal model of the north-west European continental shelf. Mem Soc R Sci Liege 10(6):141–164Google Scholar
  18. Heaps NS (1978) Linearized vertically integrated equations for residual circulation in coastal seas. Dtsch Hydrogr Z 31:147–169CrossRefGoogle Scholar
  19. Howrath MJ, Pugh DT (1983) Observations of tides over the continental shelf of northwest Europe. In: Johns D (ed) Physical oceanography of coastal and shelf seas. Elsevier, New York, pp 135–185Google Scholar
  20. Hunter JR (1979) On the interaction of M\(_2\) and M\(_4\) tidal velocities in relation to quadratic and higher power laws. Dtsch Hydrogr Z 22:146–153CrossRefGoogle Scholar
  21. Jones JE, Davies AM (1996) A high-resolution, three-dimensional model of the M\(_2\), M\(_4\), M\(_6\), S\(_2\), N\(_2\), K\(_1\), and O\(_1\) tides in the Irish Sea. Estuar Coast Shelf Sci 42:311–346CrossRefGoogle Scholar
  22. Kabbaj A, Le Provost C (1980) Non-linear tidal wave in channels: a pertubation method adapted to the importance of quadratic bottom friction. Tellus 32:143–163CrossRefGoogle Scholar
  23. Kwong SCM, Davies AM, Flather RA (1997) A three-dimensional model of the principal tides on the European Shelf. Prog Oceanogr 39:205–262CrossRefGoogle Scholar
  24. Le Provost C (1973) Décomposition spectrale du terme quadratique de frottement dans les équations des marées littorales. C R Acad Sci A 276:571–574 and 653–656Google Scholar
  25. Le Provost C (1974) Contribution à l’etude des marées dans les mers littorales. Application à la Manche. Thèse d’état, Grenoble, p 228Google Scholar
  26. Le Provost C (1976) Theoretical analysis of the tidal wave spectrum in shallow water areas. Mem Soc R Sci Liege 10:97–111Google Scholar
  27. Le Provost C (1991) Generation of overtides and compound tides (review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, pp 263–295Google Scholar
  28. Le Provost C (2001) Chapter 6: ocean tides. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences. Academic, London, pp 267–304Google Scholar
  29. Le Provost C, Fornerino M (1985) Tidal spectroscopy of the English Channel with a numerical model. J Phys Oceanogr 15:1009–1031CrossRefGoogle Scholar
  30. Le Provost C, Poncet A (1977) Sur une méthode numérique pour calculer les marées océaniques et littorales. C R Acad Sci B 285:349–352Google Scholar
  31. Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99:24777–24798CrossRefGoogle Scholar
  32. Le Provost C, Poncet A (1978) Finite-element method for spectral modeling of tides. Int J Numer Methods Eng 12:853–871Google Scholar
  33. Le Provost C, Rougier G, Poncet A (1981) Numerical modelling of the harmonic constituents of the tides with application to the English Channel. J Phys Oceanogr 11:123–138CrossRefGoogle Scholar
  34. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dynamics (ibid)Google Scholar
  35. Munk WH, Cartwright DE (1966) Tidal spectroscopy and prediction. Philos Trans R Soc Lond A 259:533–583Google Scholar
  36. Parke ME, Stewart RH, Farless DL, Cartwright DE (1987) On the choice of orbits for an altimetric satellite to study ocean circulation and tides. J Geophys Res 92(C11):11693–11707CrossRefGoogle Scholar
  37. Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, pp 263–295Google Scholar
  38. Pingree RD, Maddock L (1978) The M\(_4\) tide in the English Channel derived from a nonlinear numerical model of the M\(_2\) tide. Deep-Sea Res 25:52–63Google Scholar
  39. Ponchaut F, Lyard F, Le Provost C (2001) An analysis of the tidal signal in the WOCE sea level dataset. J Atmos Ocean Technol 18:77–91CrossRefGoogle Scholar
  40. Prandle D (1997) Tidal currents in shelf seas—their nature and impacts. Prog Oceanogr 40:245–261CrossRefGoogle Scholar
  41. Ray RD (1997) Spectral analysis of highly aliased sea-level signals. J Geophys Res 103:24991–25003CrossRefGoogle Scholar
  42. Shum CK, Woodworth PL, Andersen OB, Egbert GD, Francis O, King C, Klosko SM, Le Provost C, Li X, Molines JM, Parke M, Ray RD, Schlax M, Stammer D, Tierney C, P Vincent P, Wunch C (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):25173–25194CrossRefGoogle Scholar
  43. Sinha B, Pingree RD (1997) The principal lunar semidiurnal tide and its harmonics: baseline solutions for M\(_2\) and M\(_4\) constituents on the northwest European continental shelf. Cont Shelf Res 17:1321–1365CrossRefGoogle Scholar
  44. Smithson MJ (1992) Pelagic tidal constants—3. Int Assoc Phys Sci Oceans 35:191Google Scholar
  45. Walters RA (1987) A numerical model for tides and currents in the English Channel and the southern North Sea. Adv Water Resour 10:138–148CrossRefGoogle Scholar
  46. Walters RA, Werner FE (1991) Nonlinear generation of overtides, compound tides, and residuals. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 297–320Google Scholar
  47. Werner FE, Lynch DR (1989) Harmonic structure of English Channel/Southern Bight tides from a wave equation simulation. Adv Water Resour 12:121–142CrossRefGoogle Scholar
  48. Zelter BD, Cummings RA (1967) A harmonic method for predicting shallow-water tides. J Mar Res 25:103–114Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ole B. Andersen
    • 1
  • Gary D. Egbert
    • 2
  • Svetlana Y. Erofeeva
    • 2
  • Richard D. Ray
    • 3
  1. 1.Danish National Space CenterCopenhagenDenmark
  2. 2.College of Oceanic and Atmospheric Sciences (COAS)Oregon State UniversityCorvallisUSA
  3. 3.National Aeronautics and Space Adiministration/Goddard Space Flight Center (NASA/GSFC)GreenbeltUSA

Personalised recommendations