Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 6, pp 2195–2205 | Cite as

Einstein and \(\eta \)-Einstein Sasakian submanifolds in spheres

  • Beniamino Cappelletti-Montano
  • Andrea LoiEmail author


The aim of this paper is to study Sasakian immersions of compact Sasakian manifolds into the odd-dimensional sphere equipped with the standard Sasakian structure. We obtain a complete classification of such manifolds in the Einstein and \(\eta \)-Einstein cases when the codimension of the immersion is 4. Moreover, we exhibit infinite families of compact Sasakian \(\eta \)-Einstein manifolds which cannot admit a Sasakian immersion into any odd-dimensional sphere. Finally, we show that, after possibly performing a \({{\mathcal {D}}}\)-homothetic deformation, a homogeneous Sasakian manifold can be Sasakian immersed into some odd-dimensional sphere if and only if S is regular and either S is simply connected or its fundamental group is finite cyclic.


Sasakian Sasaki–Einstein \(\eta \)-Einstein Sasakian immersion Kähler manifolds Kähler immersions 

Mathematics Subject Classification

53C25 53C55 



  1. 1.
    Apostolov, V., Draghici, T., Moroianu, A.: The odd-dimensional Goldberg conjecture. Math. Nachr. 279, 948–952 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Besse, A.L.: Einstein manifolds, Reprint of the 1987 edition. Classics in Mathematics. Springer-Verlag, Berlin (2008)Google Scholar
  3. 3.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Basel (2010)CrossRefGoogle Scholar
  4. 4.
    Boothby, W.M., Wang, H.C.: On contact manifolds. Ann. Math. 68, 721–734 (1958)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boyer, C.P., Galicki, K.: Einstein manifolds and contact geometry. Proc. Am. Math. Soc. 129, 2419–2430 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford Mathematical Monographs, Oxford University Press, Oxford (2008)Google Scholar
  7. 7.
    Boyer, C., Galicki, K., Matzeu, P.: \(\eta \)-Einstein Sasakian geometry. Commun. Math. Phys. 262, 177–208 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boyer, C.P., Galicki, K., Kollár, J.: Einstein metrics on spheres. Ann. Math. 162, 557–580 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Calabi, E.: Isometric Imbedding of complex manifolds. Ann. Math. 58, 1–23 (1953)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Di Scala, A.J., Ishi, H., Loi, A.: Kähler immersions of homogeneous Kähler manifolds into complex space forms. Asian J. Math. (3) 16, 479–488 (2012)CrossRefGoogle Scholar
  11. 11.
    Engliš, M., Zhang, G.: Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces. Math. Z. 264(4), 901–912 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fujitani, T.: Complex-valued differential forms on normal contact Riemannian manifolds. Tôhoku Math. J. (2) 18, 349–361 (1966)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D.: Sasaki–Einstein metrics on \(S^{2}\times S^{3}\). Adv. Theor. Math. Phys. 8(4), 711–734 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, Hoboken (1978)zbMATHGoogle Scholar
  15. 15.
    Harada, M.: Sasakian space forms immersed in Sasakian space forms. Bull. Tokyo Gakugey Univ. Ser. IV 24, 7–11 (1972)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Harada, M.: On Sasakian submanifolds. Bull. Tokyo Gakugey Univ. Ser. IV 25, 19–23 (1973)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Harada, M.: On Sasakian submanifolds. Tôhoku Math. J. 25, 103–109 (1973)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hulin, D.: Kähler–Einstein metrics and projective embeddings. J. Geom. Anal. 10(3), 525–528 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Loi, A., Zedda, M.: Kähler Immersions of Kähler Manifolds into Complex Space Forms. Lecture Notes of the Unione Matematica Italiana, vol. 23. Springer (2018)Google Scholar
  20. 20.
    Loi, A., Zuddas, F.: On the Gromov width of Homogeneous Kähler manifolds. Differ. Geom. Appl. 47, 130–132 (2016)CrossRefGoogle Scholar
  21. 21.
    Kenmotsu, K.: Invariant submanifolds in a Sasakian manifold. Tôhoku Math. J. 21, 495–500 (1969)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Interscience Pubishers, Geneva (1969)zbMATHGoogle Scholar
  23. 23.
    Kon, M.: Invariant submanifolds of normal contact metric manifolds. Kōdai Math. Sem. Rep. 25, 330–336 (1973)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kon, M.: Invariant submanifolds in Sasakian manifolds. Math. Ann. 219, 277–290 (1976)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maldacena, J.: The large \(N\) limit of superconformal field theories and supergravity. Intt. J. Theor. Phys. 38, 1113–1133 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimisation. Commun. Math. Phys. 280, 611–673 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ornea, L., Piccinni, P.: Induced Hopf Bundles and Einstein Metrics, New Developments in Differential Geometry, Budapest 1996, 295–305. Kluwer Acad. Publ, Dordrecht (1999)zbMATHGoogle Scholar
  28. 28.
    Ornea, L., Verbitsky, M.: Sasakian structures on CR-manifolds. Geom. Dedicata 125(1), 155–173 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ornea, L., Verbitsky, M.: Embeddings of compact Sasakian manifolds. Math. Res. Lett. 14(4), 703–710 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Okumura, M.: On contact metric immersion. Kōdai Math. Sem. Rep. 20, 389–409 (1968)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure. Tôhoku Math. J. 2, 459–476 (1960)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Takahashi, T.: Sasakian hypersurfaces in a space of constant curvature. Tôhoku Math. J. 21, 644–653 (1969)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12, 700–717 (1968)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tanno, S.: Isometric immersions of Sasakian manifolds in spheres. Kōdai Math. Sem. Rep. 21, 448–458 (1969)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tanno, S.: Sasakian manifolds with constant \(\phi \)-holomorphic sectional curvature. Tôhoku Math. J. 21, 501–507 (1969)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tanno, S.: Geodesic flows on \(C_L\)-manifolds and Einstein metrics on \(S^{2}\times S^{3}\). In: Minimal Submanifolds and Geodesics, pp. 283–292 (1979)Google Scholar
  37. 37.
    Tsukada, K.: Einstein–Kähler submanifolds with codimension two in a complex space form. Math. Ann. 274, 503–516 (1986)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Umehara, M.: Einstein–Kähler submanifolds of complex linear or hyperbolic space. Tôhoku Math. J. 39, 385–389 (1987)CrossRefGoogle Scholar
  39. 39.
    Wolf, J.A.: Spaces of Constant Curvature, 6th edn. AMS Chelsea Publishing, Providence (2011)zbMATHGoogle Scholar
  40. 40.
    Zelditch, S.: Szegö Kernels and a Theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)CrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations