Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 6, pp 2183–2193 | Cite as

On the classification of solutions of cosmic strings equation

  • Weiwei Ao
  • Wen YangEmail author
Article
  • 113 Downloads

Abstract

In this paper, we prove some Liouville-type theorems for weak stable or finite Morse index solutions to the following equation:
$$\begin{aligned} \Delta u+e^u+|x|^\alpha e^{\beta u}=0\quad \mathrm {in}\quad \mathbb {R}^N, \end{aligned}$$
which arises from the study of selfgravitating cosmic strings for a massive W-boson model coupled with Einstein’s equation.

Mathematics Subject Classification

35J15 35J60 35J61 

Notes

Acknowledgements

The research of the first author is supported by NSFC Nos.11801421 and 11631011. The research of the second author is supported by NSFC Nos.11801550 and 11871470.

References

  1. 1.
    Ambjorn, J., Olesen, P.: Anti-screening of large magnetic fields by vector bosons. Phys. Lett. B 214, 565–569 (1988)CrossRefGoogle Scholar
  2. 2.
    Bartolucci, D., Castorina, D.: Self-gravitating cosmic strings and the Alexandrov’s inequality for Liouville-type equations. Commun. Contemp. Math. 18(4), 26 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chae, D.: Existence of a semilinear elliptic system with exponential nonlinearities. Discrete Contin. Dyn. Syst. 18, 709–718 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chae, D.: Existence of multistring solutions of a selfgravitating massive Wboson. Lett. Math. Phys. 73, 123–134 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, R.M., Guo, Y., Spirn, D.: Asymptotic behaviour and symmetry of condensate solutions in electroweak theory. J. Anal. Math. 117, 47–85 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dancer, E.N.: Finite Morse index solutions of exponential problems. Ann. Inst. H. Poincaré Anal Non Linéaire 25, 173–179 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dancer, E.N., Farina, A.: On the classification of solutions of \(-\Delta u=e^u\) on \({\mathbb{R}}^N\): stability outside a compact set and applications. Proc. Am. Math. Soc. 137(4), 1333–1338 (2009)CrossRefGoogle Scholar
  8. 8.
    Dancer, E.N., Du, Y., Guo, Z.M.: Finite Morse index solutions of an elliptic equation with supercritical exponent. J. Differ. Equ. 250, 3281–3310 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dávila, J., Dupaigne, L., Farina, A.: Partial regularity of finite Morse index solutions to the Lane–Emden equation. J. Funct. Anal. 261(1), 218–232 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dávila, J., Ye, D.: On finite Morse index solutions of two equations with negative exponent. Proc. R. Soc. Edinb. Sect. A 143(1), 121–128 (2013). (preprint)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dávila, J., Dupaigne, L., Wang, K.L., Wei, J.C.: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    De Marchis, F., Ricciardi, T.: Existence results for turbulent flows with arbitrary intensities. Nonlinear Anal. Real. 38, 222–244 (2017)CrossRefGoogle Scholar
  13. 13.
    Dupaigne, L., Ghergu, M., Goubet, O., Warnault, G.: The Gel’fand problem for the biharmonic operator. Arch. Ration. Mech. Anal. 208, 725–752 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of \({\mathbb{R}}^N\). J. Math. Pures Appl. 87, 537–561 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gui, C., Jevnikar, A., Moradifam, A.: Symmetry and uniqueness of solutions to some Liouville-type equations and systems. Comm. PDEs 43(3), 428–447 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hajlaoui, H., Harrabi, A.A., Ye, D.: On stable solutions of biharmonic problem with polynomial growth. Pac. J. Math. 270(1), 79–93 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jevnikar, A., Yang, W.: A mean field equation involving positive supported probability measures: blow-up phenomena and variational aspects. Proc. R. Soc. Edinb. A (2018).  https://doi.org/10.1017/prm.2018.30 CrossRefzbMATHGoogle Scholar
  18. 18.
    Ohtsuka, H., Ricciardi, T., Suzuki, T.: Blow-up analysis for an elliptic equation describing stationary vortex flows with variable intensities in 2D-turbulence. J. Differ. Equ. 249, 1436–1465 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Onsager, L.: Statistical hydrodynamics. Nuovo Cimento Suppl. 6, 279–287 (1949)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Poliakovsky, A., Tarantello, G.: On a planar Liouville-type problem in the study of self-gravitating strings. J. Differ. Equ. 252(5), 3668–3693 (2012)CrossRefGoogle Scholar
  21. 21.
    Poliakovsky, A., Tarantello, G.: On Singular Liouville Systems, Analysis and Topology in Nonlinear Differential Equations. PNDLE 85 Birkhauser, Cham (2014)zbMATHGoogle Scholar
  22. 22.
    Poliakovsky, A., Tarantello, G.: On non-topological solutions for planar Liouville systems of Toda-type. Commun. Math. Phys. 347(1), 223–270 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ricciardi, T., Zecca, G.: Blow-up analysis for some mean field equations involving probability measures from statistical hydrodynamics. Differ. Integral Equ. 25(3–4), 201–222 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sawada, K., Suzuki, T.: Derivation of the equilibrium mean field equations of point vortex and vortex filament system. Theor. Appl. Mech. Jpn. 56, 285–290 (2008)Google Scholar
  25. 25.
    Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tarantello, G.: Blow-up analysis for a cosmic strings equation. J. Funct. Anal. 272(1), 255–338 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tarantello, G.: Analytical issues in the construction of self-dual Chern–Simons vortices. Milan J. Math. 84(2), 269–298 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, C., Ye, D.: Some Liouville theorems for Hénon type elliptic equations. J. Funct. Anal. 262(4), 1705–1727 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, K.L.: Stable solutions for Toda system. (preprint)Google Scholar
  30. 30.
    Wei, J.C., Xu, X., Yang, W.: On the classification of stable solutions to biharmonic problems in large dimensions. Pac. J. Math. 263(2), 495–512 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wei, J.C., Ye, D.: Liouville theorems for finite Morse index solutions of biharmonic problem. Math. Ann. 356(4), 1599–1612 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)CrossRefGoogle Scholar
  33. 33.
    Yang, Y.: Self duality of the gauge field equations and the cosmological constant. Commun. Math. Phys. 162, 481–498 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations