Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 6, pp 2167–2181 | Cite as

Clifford index for reduced curves

  • Marco FranciosiEmail author
Article
  • 45 Downloads

Abstract

We extend the notion of Clifford index to reduced curves with planar singularities by considering rank 1 torsion-free sheaves. We investigate the behaviour of the Clifford index with respect to the combinatorial properties of the curve, and we show that Green’s conjecture holds for certain classes of curves given by the union of two irreducible components.

Keywords

Algebraic curve Clifford index Green’s conjecture 

Mathematics Subject Classification

14H20 14C20 14H51 

Notes

Acknowledgements

The author is grateful for support by the PRIN project 2015EYPTSB\(\_\)010 “Geometry of Algebraic Varieties” of Italian MIUR. The author would like to thank Elisa Tenni for deep and stimulating discussions on these arguments and the anonymous referee for his/her interesting observations.

References

  1. 1.
    Aprodu, M.: On the vanishing of higher syzygies of curves. Math. Zeit. 241, 1–15 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Vol. I, Fundamental Principles of Mathematical Sciences, vol. 267. Springer, Berlin (1985)zbMATHGoogle Scholar
  3. 3.
    Arbarello, E., Bruno, A.: Rank-two vector bundles on Halphen surfaces and the Gauss–Wahl map for Du Val curves. J. Éc. Polytech. Math. 4, 257–285 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caporaso, L.: Linear series on semistable curves. Int. Math. Res. Not. 2011(13), 2921–2969 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Catanese, F., Franciosi, M.: Divisors of small genus on algebraic surfaces and projective embeddings. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, vol. 9, American Mathematical Society, pp. 109–140 (1996)Google Scholar
  6. 6.
    Catanese, F., Franciosi, M., Hulek, K., Reid, M.: Embeddings of curves and surfaces. Nagoya Math. J. 154, 185–220 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coppens, M., Martens, G.: Secant spaces and Clifford’s theorem. Compos. Math. 78, 193–212 (1991)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Franciosi, M.: Adjoint divisors on algebraic curves. Adv. Math. 186, 317–333 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Franciosi, M., Tenni, E.: The canonical ring of a 3-connected curve. Rend. Lincei Mat. Appl. 25, 37–51 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Franciosi, M., Tenni, E.: On Clifford’s theorem for singular curves. Proc. Lond. Math. Soc. 108(3), 225–252 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19, 125–171 (1984). (Appendix with Robert Lazarsfeld) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Green, M., Lazarsfeld, R.: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83, 73–30 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. V. Les schémas de Picard: théorèmes d’existence. Sém. Bourbaki 7(232), 143–161 (1995)zbMATHGoogle Scholar
  14. 14.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)CrossRefGoogle Scholar
  15. 15.
    Martens, H.H.: Varieties of special divisors on a curve. II. J. Reine Angew. Math 233, 89–100 (1968)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Martens, G.: Über den Clifford-Index algebraischer Kurven. J. Reine Angew. Math 336, 83–90 (1982)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sernesi, E.: Deformations of Algebraic Schemes, Grundlehren der Mathematischen Wissenschaften 334. Springer, Berlin (2006)Google Scholar
  18. 18.
    Serre, J.-P.: Courbes Algébriques et Corps de Classes. Hermann, Paris (1959). (English translation, Springer, 1990) zbMATHGoogle Scholar
  19. 19.
    Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a \(K3\) surface. J. Eur. Math. Soc. 4(4), 363–404 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141(5), 1163–1190 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations