Regular subgroups with large intersection

  • Riccardo AragonaEmail author
  • Roberto Civino
  • Norberto Gavioli
  • Carlo Maria Scoppola


In this paper, we study the relationships between the elementary abelian regular subgroups and the Sylow 2-subgroups of their normalisers in the symmetric group \({{\,\mathrm{Sym}\,}}({{\,\mathrm{\mathbb {F}}\,}}_2^n)\), in view of the interest that they have recently raised for their applications in symmetric cryptography.


Elementary abelian regular subgroups Sylow 2-subgroups Affine groups Block ciphers Cryptanalysis 

Mathematics Subject Classification

20B35 20D20 94A60 



Funding was provided by Ministero dell’Istruzione, dell’Università e della Ricerca (IT) (Grant No. PRIN 2015TW9LSR).


  1. 1.
    Aragona, R., Calderini, M., Civino, R., Sala, M., Zappatore, I.: Wave-shaped round functions and primitive groups. Adv. Math. Commun. 13(1), 67–88 (2019)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aragona, R., Caranti, A., Sala, M.: The group generated by the round functions of a GOST-like cipher. Annali di Matematica Pura ed Applicata (1923-) 196(1), 1–17 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brunetta, C., Calderini, M., Sala, M.: On hidden sums compatible with a given block cipher diffusion layer. Discrete Math. 342(2), 373–386 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: International workshop on cryptographic hardware and embedded systems, pp. 450–466. Springer, (2007)Google Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Crypt. 4(1), 3–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. Boolean Models Methods Math. Comput. Sci. Eng. 2, 257–397 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Civino, R., Blondeau, C., Sala, M.: Differential attacks: using alternative operations. Designs Codes Cryptogr. 87(2–3), 225–247 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caranti, A., Volta, F.D., Sala, M.: Abelian regular subgroups of the affine group and radical rings. Publ. Math. Debrecen 69(3), 297–308 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Carter, R., Fong, P.: The Sylow \(2\)-subgroups of the finite classical groups. J. Algebra 1, 139–151 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Canteaut, A., Naya-Plasencia, M.: Structural weaknesses of permutations with a low differential uniformity and generalized crooked functions. In: Finite fields: Theory and applications-selected papers from the 9th international conference finite fields and applications. Contemp. Math. 518:55–71 (2010)Google Scholar
  12. 12.
    Calderini, M., Sala, M.: Elementary abelian regular subgroups as hidden sums for cryptographic trapdoors. ArXiv e-prints (2017)Google Scholar
  13. 13.
    Dixon, J.D.: Maximal abelian subgroups of the symmetric groups. Canad. J. Math. 23, 426–438 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dolmatov, V.: Gost 28147-89: Encryption, decryption, and message authentication code (mac) algorithms. Tech. Rep. (2010)Google Scholar
  15. 15.
    Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Springer, Berlin (2013)zbMATHGoogle Scholar
  16. 16.
    Liebeck, M.K., Praeger, C.E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111(2), 365–383 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Workshop on the theory and application of cryptographic techniques, Springer, pp. 386–397 (1993)Google Scholar
  18. 18.
    US Department of Commerce, National Bureau of Standards (1977) Data encryption standard. Federal information processing standards publication, vol 46, National Bureau of Standards, US Department of Commerce, Washington, p. 23Google Scholar
  19. 19.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Workshop on the theory and application of cryptographic techniques, Springer, pp. 55–64 (1993)Google Scholar
  20. 20.
    Seki H, Kaneko T.: Differential cryptanalysis of reduced rounds of GOST. In: International workshop on selected areas in cryptography, Springer, pp. 315–323 (2000)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations