Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 5, pp 1675–1692 | Cite as

High-order Bahri–Lions Liouville-type theorems

  • Abdellaziz HarrabiEmail author


Consider the following polyharmonic equations:
$$\begin{aligned} (-\Delta )^r u=f(u)\ \ \ \text{ in }\,\, \mathcal {O},\qquad \qquad (0.1) \end{aligned}$$
where \(\mathcal {O}=\mathbb {R}^n\) or \(\mathcal {O}=\mathbb {R}_+^n\) with the Dirichlet boundary conditions, \(r \in \mathbb {N}^*\) and \(n\ge 2r+1\). We prove some Liouville-type theorems classifying stable (or stable at infinity) solutions, possibly unbounded and sign-changing. Regarding the class of stable solutions, we focus on the case of superlinear nonlinearities f with subcritical or critical growth near zero, like
$$\begin{aligned}&f(s)=|s|^{p-1}s(1+c_0|s|^{q}) \text{ or } f(s)=|s|^{p-1}s\exp (s^2),\\&\quad \text{ where } 1<p\le \frac{n+2r}{n-2r},\quad q>0 \text{ and } c_0\ge 0. \end{aligned}$$
Our approach to get the main integral estimates makes use of delicate analysis with appropriate test functions and weighted seminorms. We also establish a variant of Pohozaev identity (Pohozaev in Sov Math Dokl 5:1408–1411, 1965). This permits us to get classification result for stable at infinity solutions under the global subcritical condition:
$$\begin{aligned} \frac{2n}{n-2r}F(s) -f(s)s>0,\; \forall s\ne 0, \text{ where } F(s)=\int _{ 0}^{s}f(t)\mathrm{d}t. \end{aligned}$$
Our assumptions can be verified by many nonlinearities very close to the critical growth, like
$$\begin{aligned} f(s)= c|s|^{p-1}s+\dfrac{|s|^{\frac{4r}{n-2r}}s}{\ln ^q(s^2+a)}, \end{aligned}$$
where \(1<p<\frac{n+2r}{n-2r}, \;q \ge 0,\;c\ge 0 \text{ and } a>1,\) with \(\frac{4r}{n-2r}-\frac{2q}{a\ln (a)}>0; \text{ or } c>0 \text{ if } q=0\).


Polyharmonic equations Liouville theorems Morse index Pohozaev identity Blow-up argument Universal estimate \(L^\infty \)-estimates 

Mathematics Subject Classification

Primary 35G20 35G30 Secondary 35B05 35B09 35B53 



This work was partially done in the I.C.T.P, in July 2017. The author wishes to acknowledge the reviewer for his/her thorough review, which significantly contributed to improving the quality of the publication.


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces,. Pure and Applied Mathematics. Academic Press, London, 2nd edn. xiii+305 pp (2003). 349Google Scholar
  2. 2.
    Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Colasuonna, F., Pucci, P.: Multiplicity of solutions for \(p(x)-\)polyharmonic Kirchhoff equations. Nonlinear Anal. 74(17), 5962–5974 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cowan, C.: Liouville theorems for stable Lane–Emden systems and biharmonic problems. Nonlinearity 26, 2357–2371 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dávila, J., Dupaigne, L., Farina, A.: Partial regularity of finite Morse index solutions to the Lane–Emden equation. J. Funct. Anal. 261, 218–232 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dávila, J., Dupaigne, L., Wang, K., Wei, J.: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dupaigne, L., Farina, A.: Stable solutions of \(-\Delta u=f(u)\) in \(\mathbb{R}^n\). J. Eur. Math. Soc. 12, 855–882 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of \(\mathbb{R}^N\). J. Math. Pures Appl. 87, 537–561 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Part Diff. Equ. 6, 883–901 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983)Google Scholar
  11. 11.
    Hajlaoui, H., Harrabi, A., Ye, D.: On stable solutions of the biharmonic problem with polynomial growth. Pacific J. Math. 270, 79–93 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hamdani, M.K., Harrabi, A., Rahal, B.: Classification of stable solutions for non-homogeneous higher-order elliptic PDEs, J. Ineq. Appl.
  13. 13.
    Harrabi, A., Mtiri, F., Ye, D.: Explicit \(L^{\infty }\)-norm estimates via Morse index, the bi-harmonic and tri-harmonic semilinear problems. Manuscripta Math. (2018). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Harrabi, A., Rahal, B.: On the sixth-order Joseph–Lundgren exponent. Ann. IHP. 18, 1055–1094 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Harrabi, A., Rebhi, S., Selmi, A.: Solutions of superlinear equations and their Morse indices II. Duke. Math. J. 94, 141–157 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pohozaev, S.I.: Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\). Sov. Math. Dokl. 5, 1408–1411 (1965)Google Scholar
  17. 17.
    Polácik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Reichel, W., weth, T.: A priori bounds and a Liouville theorem on a half space for higher-order elliptic Dirichlet problems. Math. Z. 261, 805–827 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sirakov, B.: Existence results and a priori bounds for higher order elliptic equations and systems, J.Math.Pures.Appl 9 89, no. 2, 114–133 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Souplet, P.: The proof of the Lane–Emden conjecture in four space dimensions. Adv. Math. 221, 1409–1427 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wei, J., Xu, X.: Classification of solutions of high order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wei, J., Ye, D.: Liouville Theorems for stable solutions of biharmonic problem. Math, Ann. 356(4), 1599–1612 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, X.F.: Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDE’s. J. Funct. Anal. 160, 223–253 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentNorthern Borders UniversityArarSaudi Arabia
  2. 2.Institut Supérieur des Mathématiques Appliquées et de l’InformatiqueUniversité de KairouanKairouanTunisia
  3. 3.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations