Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 5, pp 1863–1884 | Cite as

Group invariance of integrable Pfaffian systems

  • A. KumperaEmail author


Let \({\mathcal {S}}\) be an integrable Pfaffian system. When it is invariant under a transversally free infinitesimal action of a finite-dimensional real Lie algebra g and consequently invariant under the local action of a Lie group G, we show that the vertical variational cohomology of \({\mathcal {S}}\) is equal to the Lie algebra cohomology of g with values in the space of the horizontal cohomology in maximum dimension. This result, besides giving an effective algorithm for the computation of the variational cohomology of an invariant Pfaffian system, provides a method for detecting obstructions to the existence of finite or infinitesimal actions leaving a given system invariant.


Differential systems Partial differential equations Pfaffian systems Standard prolongations Merihedric prolongations Lie groups and algebras Lie groupoids and algebroids Finite and infinitesimal actions Variational cohomology Lie algebra cohomology Local models Integration Foliations 

Mathematics Subject Classification

Primary 53C05 Secondary 53C15 53C17 



Our acknowledgements are due to Ercüment Ortaçgil for his precious help and encouragement and also for suggesting us the use of quaternions. Initially, the author tried to apply Élie Cartan’s beautiful technique of the moving frame, but the quaternions simplified and rendered more concise our argumentation. It was also Prof. Ortaçgil that indicated to us the so practical text [14].


  1. 1.
    Bernoulli, J.: Ars Conjectandi—Tractatus de Seriebus Infinitis. Thurnisiorum, Basilea (1713)Google Scholar
  2. 2.
    Bott, R.: On a topological obstruction to integrability. Global analysis. In: Proceedings of Symposium in Pure Mathematics, Berkeley, California, vol. 16, pp. 127–131 (1970)Google Scholar
  3. 3.
    Cartan, E.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. École Norm. Sup. 27, 109–192 (1910)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cartan, E.: Les systèmes différentiels extérieurs et leurs applications géométri-ques. Hermann, Paris (1945)zbMATHGoogle Scholar
  5. 5.
    Cartan, E.: Oeuvres Complètes, Part II. Gauthier-Villars, Paris (1953)zbMATHGoogle Scholar
  6. 6.
    Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms, Part I. Indag. Math. 18, 338–359 (1956)CrossRefGoogle Scholar
  7. 7.
    Granas, A. (ed.): Toruńska Księga Problemów Matematycznych. Polska Akad. Nauk (2016)Google Scholar
  8. 8.
    Kumpera, A.: Exterior Differential Systems. Princeton University, Princeton (1962)Google Scholar
  9. 9.
    Kumpera, A.: Les symétries généralisées et le complexe d’Euler–Lagrange. J. Fac. Sci. Univ. Tokyo 38, 589–622 (1991)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kumpera, A.: On the Lie and Cartan theory of invariant differential systems. J. Math. Sci. Univ. Tokyo 6, 229–314 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kumpera, A.: Automorphisms of Flag Systems. arXiv, to be published in JDEQ, 1411.0951:25 (2015)Google Scholar
  12. 12.
    Kumpera, A., Spencer, D.: Lie Equations, Vol. 1: General Theory. Princeton University Press, Princeton (1972)zbMATHGoogle Scholar
  13. 13.
    Lie, S.: Verwertung des Gruppenbegriffes für Differentialgleichungen, I. Ber. Ges. Leipz. Math. Phys. 15, 261–322 (1895)zbMATHGoogle Scholar
  14. 14.
    Meister, L., Schaeben, H.: A concise quaternion geometry of rotations. Math. Methods Appl. Sci. 28, 101–126 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Inc., Upper Saddle (1964)zbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Universidade Estadual de Campinas (State University of Campinas)CampinasBrazil

Personalised recommendations