Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 4, pp 1471–1479 | Cite as

Surfaces with a canonical principal direction and prescribed mean curvature

  • Rafael López
  • Gabriel Ruiz-HernándezEmail author


A surface in Euclidean space has a canonical principal direction with respect to a fixed direction \({{\mathbf {d}}}\) if its tangent part \({{\mathbf {d}}}^\top \) is a principal direction along the surface. In this paper, we classify all such surfaces with prescribed mean curvature given as an affine function of one of the following three functions: the height function, the angle function and the support function.


Principal direction Mean curvature Capillary surface Self-shrinker Translating soliton 

Mathematics Subject Classification




The second author wants to thanks the Departamento de Geometría y Topología and the Instituto de Matemáticas (IEMath-GR) of Universidad de Granada for the hospitality, facilities and inspiring ambient during this sabbatical year. He is also grateful with his institution UNAM by this opportunity of a sabbatical period supported by the program PASPA of DGAPA.


  1. 1.
    Cermelli, P., Di Scala, A.J.: Constant-angle surfaces in liquid crystals. Philos. Mag. 87, 1871–1888 (2007)CrossRefGoogle Scholar
  2. 2.
    Chang, J.-E.: 1-dimensional solutions of the \(\lambda \)-self shrinkers. Geom. Dedicata 189, 97–112 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clutterbuck, J., Schnürer, O., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. 29, 281–293 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dillen, F., Fastenakels, J., Van der Veken, J.: Surfaces in \(S^2 \times {{\mathbb{R}}}\) with a canonical principal direction. Ann. Glob. Anal. Geom. 35, 381–396 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dillen, F., Munteanu, M.I., Nistor, A.: Canonical coordinates and principal directions for surfaces in \({\mathbb{H}}^2 \times {{\mathbb{R}}}\). Taiwan. J. Math. 15, 2265–2289 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fu, Y., Nistor, A.: Constant angle property and canonical principal directions for surfaces in \(M^2(c)\times R_1\). Mediterr. J. Math. 10, 1035–1049 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Garnica, E., Palmas, O., Ruiz-Hernández, G.: Hypersurfaces with a canonical principal direction. Differ. Geom. Appl. 30, 382–391 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huisken, G.: Flow by mean curvature convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. 8, 1–14 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ilmanen, T.: Lectures on mean curvature flow and related equations. In: Conference on Partial Differential Equations & Applications to Geometry. ICTP, Trieste (1995)Google Scholar
  14. 14.
    López, R.: Capillary channels in a gravitational field. Nonlinearity 20, 1573–1600 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    López, R.: Invariant surfaces in Euclidean space with a log-linear density. Adv. Math. 339, 285–309 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52, 853–858 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Munteanu, M.I., Nistor, A.: Complete classification of surfaces with a canonical principal direction in the Euclidean space \(E^3\). Cent. Eur. J. Math. 9, 378–389 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pockels, F.: Kapillarität Handbuch der Physik Band I ed A Winkelmann. Leipzig (1908)Google Scholar
  19. 19.
    Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31, 27–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wa, X.-J.: Convex solutions to the mean curvature flow. Ann. Math. 173, 1185–1239 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Geometría y Topología, Instituto de Matemáticas (IEMath-GR)Universidad de GranadaGranadaSpain
  2. 2.Instituto de Matemáticas, Unidad JuriquillaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico

Personalised recommendations