On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces

  • Reinhard FarwigEmail author
  • Yoshikazu Giga
  • Pen-Yuan Hsu


It is well known that there exists a unique local-in-time strong solution u of the initial boundary value problem for the Navier–Stokes system in a three-dimensional smooth bounded domain when the initial velocity \(u_0\) belongs to critical Besov spaces. A typical space is \(B=B^{-1+3/q}_{q,s}\) with \(3<q<\infty \), \(2<s<\infty \) satisfying \(2/s+3/q \le 1\) or \(B=\mathring{B}^{-1+3/q}_{q,\infty }\). In this paper, we show that the solution u is continuous in time up to initial time with values in B. Moreover, the solution map \(u_0\mapsto u\) is locally Lipschitz from B to \(C\left( [0,T];B\right) \). This implies that in the range \(3<q<\infty \), \(2<s\le \infty \) with \(3/q +2/s \le 1\) the problem is well posed which is in strong contrast to norm inflation phenomena in the space \(B^{-1}_{\infty ,s}\), \(1\le s <\infty \) proved in the last years for the whole space case.


Nonstationary Navier–Stokes system Initial values Weighted Serrin condition Limiting type of Besov space Continuity of solutions Stability of solutions 

Mathematics Subject Classification

35Q30 76D05 



This work is partly supported by the Japan Society for the Promotion of Science (JSPS) and the German Research Foundation through Japanese–German Graduate Externship IRTG 1529. The first and third authors are supported in part by the 7th European Framework Programme IRSES “FLUX”, Grant Agreement No. PIRSES-GA-2012-319012. The second author is partly supported by JSPS through the Grant Kiban S (26220702), Kiban A (17H01091), Kiban B (16H03948), Challenging Research (Pioneering) (18H05323). Moreover, the third author gratefully acknowledges the support by the Iwanami Fujukai Foundation. We also would like to thank the anonymous reviewer for helpful comments to improve the style of this article.


  1. 1.
    Amann, H.: Linear and Quasilinear Parabolic Equations. Birkhäuser Verlag, Basel (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Amann, H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amann, H.: Navier-Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Phys. 10(Suppl. 1), 1–11 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cheskidov, A., Shvydkoy, R.: Ill-posedness of the basic equations of fluid dynamics in Besov spaces. Proc. Am. Math. Soc. 138, 1059–1067 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)zbMATHGoogle Scholar
  7. 7.
    Farwig, R.: On regularity of weak solutions to the instationary Navier–Stokes system: a review on recent results. Ann. Univ. Ferrara, Sez. VII. Sci. Mat. 60, 91–122 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farwig, R., Giga, Y., Hsu, P.-Y.: Initial values for the Navier–Stokes equations in spaces with weights in time. Funkcial. Ekvac. 59, 199–216 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Farwig, R., Giga, Y., Hsu, P.-Y.: The Navier–Stokes equations with initial values in Besov spaces of type \(B^{-1+3/q}_{q,\infty }\). J. Korean Math. Soc. 54, 1483–1504 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46, 607–643 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Farwig, R., Sohr, H.: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Farwig, R., Sohr, H., Varnhorn, W.: On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara Sez. VII. Sci. Mat. 55, 89–110 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Giga, Y.: Solution for semilinear parabolic equations in \(L^p\) and regularity of weak solutions for the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)CrossRefzbMATHGoogle Scholar
  16. 16.
    Haak, B.H., Kunstmann, P.C.: On Kato’s method for Navier–Stokes equations. J. Math. Fluid Mech. 11, 492–535 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R}}^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Am. Math. Soc. Transl. II 24, 79–106 (1963)zbMATHGoogle Scholar
  20. 20.
    Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space \(L^{n,\infty }\). Houst. J. Math. 21, 755–799 (1995)zbMATHGoogle Scholar
  22. 22.
    Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lunardi, A.: Interpolation Theory. Edizioni Della Normale, Appunti. Sc. Norm. Super. Pisa, 3rd edn. (2018)Google Scholar
  24. 24.
    Meyer, Y.: Wavelets, Paraproducts and Navier–Stokes Equations. Current Developments in Mathematics. International Press, Boston (1997)Google Scholar
  25. 25.
    Miyakawa, T.: On the initial value problem for the Navier–Stokes equations in \(L^r\)-spaces. Hiroshima Math. J. 11, 9–20 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  27. 27.
    Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. J. Sov. Math. 8, 467–529 (1977)CrossRefzbMATHGoogle Scholar
  28. 28.
    Stein, E.M., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Strichartz, R.S.: \(L^p\) estimates for integral transforms. Trans. Am. Math. Soc. 136, 33–50 (1969)zbMATHGoogle Scholar
  30. 30.
    Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators, Amsterdam (1978)zbMATHGoogle Scholar
  31. 31.
    Wang, B.: Ill-posedness for the Navier–Stokes equations in critical Besov spaces \(\dot{B}^{-1}_{\infty, q}\). Adv. Math. 268, 350–372 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yoneda, T.: Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near \(BMO^{-1}\). J. Funct. Anal. 258, 3376–3387 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Graduate School of Mathematical SciencesUniversity of TokyoMeguro-kuJapan

Personalised recommendations