Advertisement

Higher regularity for solutions to elliptic systems in divergence form subject to mixed boundary conditions

  • Robert Haller-Dintelmann
  • Hannes MeinlschmidtEmail author
  • Winnifried Wollner
Article
  • 32 Downloads

Abstract

This work combines results from operator and interpolation theory to show that elliptic systems in divergence form admit maximal elliptic regularity on the Bessel potential scale \( H ^{s-1}_D(\varOmega )\) for \(s>0\) sufficiently small, if the coefficient in the main part satisfies a certain multiplier property on the spaces \( H ^{s}(\varOmega )\). Ellipticity is enforced by assuming a Gårding inequality, and the result is established for spaces incorporating mixed boundary conditions with very low regularity requirements for the underlying spatial set. To illustrate the applicability of our results, two examples are provided. Firstly, a phase-field damage model is given as a practical application where higher differentiability results are obtained as a consequence to our findings. These are necessary to show an improved numerical approximation rate. Secondly, it is shown how the maximal elliptic regularity result can be used in the context of quasilinear parabolic equations incorporating quadratic gradient terms.

Keywords

Maximal elliptic regularity Non-Lipschitz coefficients Second-order divergence operators Elliptic system Mixed boundary conditions Phase-field damage 

Mathematics Subject Classification

Primary 35B65 Secondary 35J57 35J25 

Notes

Acknowledgements

The authors express their gratitude to the anonymous referee for useful comments and Joachim Rehberg (WIAS Berlin) for valuable discussions. Hannes Meinlschmidt is grateful for support of his former institution TU Darmstadt; Winnifried Wollner acknowledges funding by the DFG priority program 1962.

References

  1. 1.
    Amann, H.: Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4(4), 417–430 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amann, H.: Quasilinear parabolic problems via maximal regularity. Adv. Differ. Equ. 10(10), 1081–1110 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Auscher, P., Badr, N., Haller-Dintelmann, R., Rehberg, J.: The square root problem for second-order, divergence form operators with mixed boundary conditions on \(L^p\). J. Evol. Equ. 15(1), 165–208 (2014).  https://doi.org/10.1007/s00028-014-0255-1 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bechtel, S., Egert, M.: Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets. Preprint arXiv:1807.02293
  5. 5.
    Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008).  https://doi.org/10.1007/s10659-007-9107-3 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brezis, H., Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. Fr 96, 153–180 (1968)CrossRefGoogle Scholar
  7. 7.
    Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elasticity. No. Bd. 1 in Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1988)Google Scholar
  8. 8.
    Egert, M.: On Kato’s conjecture and mixed boundary conditions. Sierke. Ph.D. Thesis, TU Darmstadt (2015)Google Scholar
  9. 9.
    Egert, M., Haller-Dintelmann, R., Tolksdorf, P.: The Kato square root problem for mixed boundary conditions. J. Funct. Anal. 267(5), 1419–1461 (2014).  https://doi.org/10.1016/j.jfa.2014.06.003 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 11. Springer Nature (2012).  https://doi.org/10.1007/978-88-7642-443-4
  11. 11.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, vol. 224, revised 3 edn. Springer, Berlin (2001)zbMATHGoogle Scholar
  12. 12.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, 1st edn. Pitman, Boston (1985)zbMATHGoogle Scholar
  13. 13.
    Gröger, K.: A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283(4), 679–687 (1989).  https://doi.org/10.1007/BF01442860 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gröger, K., Rehberg, J.: Resolvent estimates in \(W^{-1, p}\) for second order elliptic differential operators in case of mixed boundary conditions. Math. Ann. 285(1), 105–113 (1989).  https://doi.org/10.1007/BF01442675 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herzog, R., Meyer, C., Wachsmuth, G.: Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382(2), 802–813 (2011).  https://doi.org/10.1016/j.jmaa.2011.04.074 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995).  https://doi.org/10.1137/1037123 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jochmann, F.: An \(H^s\)-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238(2), 429–450 (1999).  https://doi.org/10.1006/jmaa.1999.6518 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jonsson, A., Wallin, H.: Function spaces on subsets of \({ R}^n\). Math. Rep. 2(1), 1–221 (1984)zbMATHGoogle Scholar
  19. 19.
    Marschall, J.: Nonregular pseudo-differential operators. Z. Anal. Anwendungen 15(1), 109–148 (1996).  https://doi.org/10.4171/zaa/691 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Maz’ya, V., Shaposhnikova, T.O.: Theory of Sobolev Multipliers, Grundlehren der mathematischen Wissenschaften, vol. 337. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-540-69492-2 CrossRefGoogle Scholar
  21. 21.
    McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Neff, P., Pompe, W.: Counterexamples in the theory of coerciveness for linear elliptic systems related to generalizations of Korn’s second inequality. Z. Angew. Math. Mech. 94(9), 784–790 (2014).  https://doi.org/10.1002/zamm.201300059 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Neitzel, I., Wick, T., Wollner, W.: An optimal control problem governed by a regularized phase-field fracture propagation model. SIAM J. Control Optim. 55(4), 2271–2288 (2017).  https://doi.org/10.1137/16M1062375 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Oden, J.T.: Existence theorems for a class of problems in nonlinear elasticity. J. Math. Anal. Appl. 69(1), 51–83 (1979).  https://doi.org/10.1016/0022-247X(79)90178-1 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Prüss, J.: Maximal regularity for evolution equations in \(L^p\)-spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2002)Google Scholar
  26. 26.
    Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256(2), 405–430 (2001).  https://doi.org/10.1006/jmaa.2000.7247 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Runst, T., Sickel, W.: Sobolev Space of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter, Berlin (1996)zbMATHGoogle Scholar
  28. 28.
    Serre, D.: Second-order initial-boundary value problems of variational type. J. Funct. Anal. 236(2), 409–446 (2006).  https://doi.org/10.1016/j.jfa.2006.02.020 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)Google Scholar
  30. 30.
    Triebel, H.: On spaces of \(B^{s}_{\infty {}, q}\) type and \({\mathfrak{C}}^{s}\) type. Math. Nachr. 85, 75–90 (1978)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Šneĭberg, I.J.: Spectral properties of linear operators in interpolation families of Banach spaces. Mat. Issled 9(2(32)), 214–229, 254–255 (1974)Google Scholar
  32. 32.
    Zhang, K.: On coercivity and regularity for linear elliptic systems. Calc. Var. Partial Differ. Equ. 40(1–2), 65–97 (2011).  https://doi.org/10.1007/s00526-010-0334-2 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Johann Radon Institute for Computational and Applied Mathematics (RICAM)LinzAustria
  3. 3.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations